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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing simple 

and organized study content to all the learners. The SLMs are prepared on the 

framework of being mutually cohesive, internally consistent and structured as 

per the university’s syllabi. It is a humble attempt to give glimpses of the 

various approaches and dimensions to the topic of study and to kindle the 

learner’s interest to the subject 

 

We have tried to put together information from various sources into this book 

that has been written in an engaging style with interesting and relevant 

examples. It introduces you to the insights of subject concepts and theories and 

presents them in a way that is easy to understand and comprehend.  

 

We always believe in continuous improvement and would periodically update 

the content in the very interest of the learners. It may be added that despite 

enormous efforts and coordination, there is every possibility for some omission 

or inadequacy in few areas or topics, which would definitely be rectified in 

future. 

 

We hope you enjoy learning from this book and the experience truly enrich 

your learning and help you to advance in your career and future endeavours. 
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BLOCK 1 DIFFERENTIAL 

GEOMETRY  

Introduction to the Block 

In this block we will go through differential Geometry…Cartography & 

Differential Geometry , Differential Geometry And Differential 

Topology , Vector Fields and Flows… . . Vector Fields , Vector Bundles 

And Submersions , Geodesics , Convexity , Curvature……………… 

 

Unit I Deals with Differential Geometry Cartography & Differential 

Geometry 

Unit II  Deals with Differential Geometry And Differential Topology  

Unit III Deals with Vector Fields and Flows… . . Vector Fields 

Unit IV Deals with Vector Bundles And Submersions 

Unit V Deals with Geodesics  

Unit VI Deals with Convexity 

Unit VII Deals with Curvature 

 



7 
 

UNIT-I: DIFFERENTIAL GEOMETRY  

 

STRUCTURE 

1.0 Objectives 

1.1 Introduction 

1.2 Differential Geometry … Cartography And Differential Geometry 

1.3 Curves 

1.4 Basics Of Euclidean Geometry 

1.5 Let Us Sum Up 

1.6 Keywords 

1.7 Questions For Review 

1.8 References 

1.9 Answers To Check Your Progress 

1.0 OBJECTIVES 

  

After studying this unit , you should be able to: 

 Understand about Differential Geometry  

 Cartography And Differential Geometry   Curves       

 Basics Of Euclidean Geometry 

 

1.1 INTRODUCTION 

Differential geometry arose and developed as a result of and in 

connection to the mathematical analysis of curves and surfaces 

Mathematical analysis of curves and surfaces had been developed to 

answer some of unanswered questions that appeared in calculus like the 

reasons for relationships between complex shapes and curves , series and 
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analytic functions Differential Geometry … Cartography And 

Differential Geometry , Curves , Basics Of Euclidean Geometry 

 

1.2 DIFFERENTIAL GEOMETRY  

WHAT IS DIFFERENTIAL GEOMETRY? 

CARTOGRAPHY AND DIFFERENTIAL GEOMETRY 

Carl Friedrich GauB ( 1777 - 1855 ) is the father of differential geometry 

. He was ( among many other things ) a cartographer and many terms in 

modern differential geometry ( chart , atlas , map , coordinate system , 

geodesic , etc . ) reflect these origins . He was led to his Theorema 

Egregium by the question of whether it is possible to draw an accurate 

map of a portion of our planet . Let us begin by discussing a 

mathematical formulation of this problem .  

Consider the two dimensional sphere S2 sitting in the three dimensional 

Euclidean space R3 . It is cut out by the equation correspondence with a 

small region in the plane z = 0 . In this book we will represent this with 

the notation 0 : U ^ 0 ( U ) C R2 and call such an object a chart or a 

system of local coordinates .  

What does it mean that 0 is an "accurate" map? Ideally the user would 

want to use the map to compute the length of a curve in S2 . The length 

of a curve 7 connecting two points p ,  

so the user will want the chart 0 to satisfy L ( 7 ) = L ( 0 o 7 ) for all 

curves 7 . It is a consequence of the Theorema Egregium that there is no 

such chart .  

Perhaps the user of such a map will be content to use the map to plot the 

shortest path between two points p and q in U . This path is called a 

geodesic . Denote this shortest path by ypq . It satisfies L ( ypq ) = du ( p, 

q ) where 

du ( p , q ) = inf {L ( 7 ) | 7 ( t ) e U , 7 ( 0 ) = p , 7 ( 1 ) = q} so our less 

demanding user will be content if the chart 0 satisfies 
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du ( p , q ) = dE ( 0 ( p ) , 0 ( q ) )  

where dE ( p , q ) is the length of the shortest path . It is also a 

consequence of the Theorema Egregium that there is no such chart .  

Now suppose our user is content to have a map which makes it easy to 

navigate along the shortest path connecting the two paths . Ideally the 

user would use a straight edge , magnetic compass , and protractor to do 

this . S / he would draw a straight line on the map connecting p and q and 

steer a course which maintains a constant angle ( on the map ) between 

the course and meridians . This can be done by the method of 

stereographic projection . This chart is conformal ( which means that it 

preserves angles ) . According to Wikipedia stereographic projection was 

known to the ancient Greeks and a map using stereographic projection 

was constructed in the early 16th century . stereographic projection; the 

latter exercise deals with the Poincare model of the hyperbolic plane . 

The hyperbolic plane provides a counter example the Euclid's Parallel 

Postulate .  

Exercise . It is more or less obvious that for any surface M C R3 there is 

a unique shortest path in M connecting them if they are sufficiently close 

. This shortest path is called the minimal geodesic connecting p and q . 

Use this fact to prove that the minimal geodesic joining two points p and 

q in S2 is an arc of the great circle through p and q . ( This is the 

intersection of the sphere with the plane through p , q , and the center of 

the sphere . ) Also prove that the minimal geodesic connecting 

n 

 

Stereographic Projection 
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two points in a plane is the straight line segment connecting them . Hint: 

Both a great circle in a sphere and a line in a plane are preserved by a 

reflection .  

Exercise . Stereographic projection is defined by the condition that for p 

e S2 \ n the point 0 ( p ) lies in the xy - plane z = 0 and the three points n 

= ( 0 , 0 , 1 ) , p , and 0 ( p ) are collinear . Using the formula that the 

cosine of the angle between two unit vectors is their inner product prove 

that 0 is conformal . Hint: The plane of p , q , and n intersects the xy - 

plane in a straight line and the sphere in a circle through n . The plane of 

n , p , and 0 ( p ) intersects the sphere in a meridian . A proof that 

stereographic projection is conformal can be found . The proof is 

elementary in the sense that it doesn't use calculus .  

Exercise . It may seem fairly obvious that you can't draw an accurate 

map of a portion of the earth because the sphere is curved . However the 

cylinder C = { ( x , y , z ) e R3 | x2 + y2 = 1} is also curved , but the map 

0 : R2 ^ C defined by 0 ( s , t ) = ( cos t , sin t , s ) preserves lengths of 

curves , i . e . L ( 0 o y ) = L ( y ) for any curve y : [a , b] ^ R2 . Prove 

this .  

Standard Notations . The standard notations N , No , Z , Q , R , C denote 

respectively the natural numbers ( = positive integers ) , the non - 

negative integers , the integers , the rational numbers , the real numbers , 

and the complex numbers . We denote the identity map of a set X by idX 

and the n x n identity matrix by Hn or simply 1 . The notation V* is used 

for the   dual of a vector space V , but when K is a field like R or C the 

notation K* is sometimes used for the multiplicative group K \ {0} . The 

terms smooth , infinitely differentiable , and C^ are all synonymous .  

Coordinates 

The rest of this chapter defines category of smooth manifolds and 

smooth maps between them . Before giving the precise definitions we 

will introduce some terminology and give some examples .  
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Definition . A chart on a set M is a pair ( f , U ) where U is a subset of M 

and f : U ^ f ( U ) is a bisection1 from U to an open set f ( U ) in Rm . An 

atlas on M is a collection A = { ( fa , Ua ) }aGA of charts such that the 

domains Ua cover M , i . e .  

M = J Ua .  

ag A 

The idea is that if f ( p ) = ( x1 ( p ) , . . . , xm ( p ) ) for p e U then the 

functions Xi form a system of local coordinates defined on the subset U 

of M . The dimension of M should be m since it takes m numbers to 

uniquely specify a point of U . We will soon impose conditions on charts 

( f , U ) , however for the moment we are assuming nothing about the 

maps f ( other than that they are bijective ) .  

Example . Every open subset U C Rm has an atlas consisting of a single 

chart , namely ( f , U ) = ( idu , U ) where id^ denotes the identity map of 

U .  

Example . Assume that W C Rm and V C Rn are open sets , that M is a 

subset of the product Rm x Rn = Rm + n , and f : W ^ V is a map whose 

graph is a subset of M , i . e .  

graph ( f ) := { ( x , y ) e W x V | x e W , y = f ( x ) } C M .  

Let U = ( W n V ) n graph ( f ) and let f ( x , y ) = x be the projection of 

U onto W . Then the pair ( f , U ) is a chart on M . The inverse map is 

given by f - 1 ( x ) = ( x , f ( x ) ) ) .  

Example . The m - sphere 

Sm = {p = ( xo , . . . , xm ) e Rm + 1 | x2 +   + xm = 1} 

has an atlas consisting of the 2m + 2 charts 0j± : Ui± ^ Dm where Dm is 

the open unit disk in Rm , Uj± = {p £ Sm | ± Xj > 0} , and 0j± is the 

projection which discards the ith coordinate .  
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Example . Let A = AT £ R ( m + 1 ) x ( m + L be a symmetric matrix and 

define a quadratic form F : Rm + 1 ^ R by 

F ( p ) := xtAx , p = ( x0 , . . . , xm ) .  

After a linear change of coordinates the function F has the form 

f ( p ) = x0 + ■ ■ ■ + xk— xk + i — ■ ■ ■— x2 .  

 ( Here r is the rank of the matrix A . ) The set M = F - 1 ( 1 ) has an atlas 

of 2m + 1 charts by the same construction as in Example , in fact Sm + 1 

is the special case where A = ]ln , the n x n identity matrix .  

enumerates the familiar quadric surfaces in R3 . When W = R2 and V = 

R the paraboloids are examples of graphs and the ellipsoid and the two 

hyperboloids are instances of the quadric surfaces defined . The sphere is 

an instance of the ellipsoid ( a = b = c =1 ) and the cylinder is a limit ( as 

c ^ rc> ) of the hyperbolic paraboloid . The pictures were generated by 

computer using the parameterizations 

x = acos ( f ) sin ( s ) , y = bsin ( t ) sin ( s ) ,  z = ccos ( s )  

for the ellipsoid ,  

x = a cos ( f ) sinh ( s ) , y = b sin ( t ) sinh ( s ) ,  z = c cosh ( s )  

for the hyperbolic paraboloid , and 

x = a cosh ( f ) sinh ( s ) , y = b sinh ( t ) sinh ( s ) ,  z = c cosh ( s )  

for the elliptic paraboloid . These quadric surfaces will be often used in 

the sequel to illustrate important concepts .  

In the following two examples K denotes either the field R of real 

numbers or the field C of complex numbers , K* := {A £ K | A = 0} 

denote the corresponding multiplicative group , and V denotes a vector 

space over K .   

2 , 2 , 2 i 

x + y + z =1 

x2 y2 z2   + - —I = 1 
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a2 b2 c2 1 

x2 I y2 = 1  

Example . The projective space of V is the set of lines ( through the 

origin ) in V . In other words ,  

P ( V ) = {t C V 1t is a 1 - dimensional K - linear subspace} 

When K = R and V = Rm + 1 this is denoted by RPm and when K = C 

and C = Rm + 1 this is denoted by CPm . For our purposes we can 

identify the spaces Cm + 1 and R2m±2 but the projective spaces CPm 

and RP2m are very different . The various lines t £ P ( V ) intersect in the 

origin , however , after the harmless identification 

P ( V ) = {[v] | v £ V \ {0} , [v] := K*v = Kv \ {0} 

the elements of P ( V ) become disjoint , i . e . P ( V ) is the set of 

equivalence classes of an equivalence relation on the open set V \ {0} . 

Assume that V = Km + 1 and define an atlas on P ( V ) as follows . For 

each i = 0 , 1 , . . . , m let Ui = {[v] | , v = ( x0 , . . . , xm ) Xi = 0} and 

define a bijection 0 : U ^ Km by the formula 

0i ( [v] ) = ( X0 , . . . , Xi - 1 , Xi±i . . . , xm^ .  

\ / y> .  ry .  ry .  ry ■ } 

\ xi xi xi xi J 

This atlas consists of m + 1 charts .  

Example . For each positive integer k the set 

Gk ( V ) := {t C V 11 is a k - dimensional K - linear subspace} 

is called the Grassmann manifold of k - planes in V . Thus G1 ( V ) = P ( 

V ) . Assume that V = Kn and define an atlas on Gk ( V ) as follows . Let 

e1 , . . . , en be the standard basis for Kn , i . e . ei is the ith column of the 

n x n identity matrix 1n . Each partition {1 , 2 , . . . , n} = I U J , I = {i1 < 

••• < ik} , J = j1 < ■ ■ ■ < jn - k of the first the first n natural numbers 

determines a direct sum decomposition 

Kn = V = V /  
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via the formulas V / = Kei1 + ■ ■ ■ + Keifc and VJ = Kej1 + ■ ■ ■ + 

Kejn_fc . Let U / denote the set of t £ Gk ( V ) which are transverse to VJ 

, i . e . such that t n VJ = {0} . The elements of U / are precisely those k - 

planes of form t = graph ( A ) where A : V / ^ Vj is a linear map . Define 

0 / : Ui ^ Kfcx ( n_fc ) by the formula 

n - k 

0 / ( t ) — ( ars ) , Aeir — ^ ^ asrejs .  

s=1 

Exercise . Prove that the set of all pairs ( 0 / , U / ) as I ranges over the 

subsets of {1 , . . . , n} of cardinality k form an atlas .  

 

Topological Manifolds* 

Definition . A topological manifold is a topological space M such that 

each point p e M has an open neighborhood U which is homeomorphic to 

an open subset of a Euclidean space .  

Brouwer's Invariance of Domain Theorem asserts that , when U C Rm 

and V C Rn are nonempty open sets and f : U ^ V is a homeomorphism , 

then m = n . This means that if M is a connected topological manifold 

and some point of M has a neighborhood homeomorphic to an open 

subset of Rm , then every point of M has a neighborhood homeomorphic 

to an open subset of that same Rm . In this case we say that M has 

dimension m or is m - dimensional or is an m - manifold . Brouwer's 

theorem is fairly difficult but if f is a diffeomorphism the result is an easy 

consequence of the invariance of the rank in linear algebra and the chain 

rule .  

By definition , a topological m - manifold M admits an atlas where every 

chart ( f , U ) of the atlas is a homeomorphism f : U ^ f ( U ) from an 

open set of U C M to an open set f ( U ) C Rm . The following definition 

and lemma explains when a given atlas determines a topology on M .  
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Definition . Let M be a set . Two charts ( fi , Ui ) and ( f2 , U2 ) are said 

to be topologically compatible iff f1 ( U1 n U2 ) is open in f1 ( U1 ) , f2 ( 

U1 n U2 ) is open in f2 ( U2 ) , and the transition map 

f21 := f2 ° f - 1 : f 1 ( U1 n U2 ) ^ f2 ( U1 n U2 )  

is a homeomorphism . An atlas is said to be a topological atlas iff any 

two charts in this atlas are topologically compatible .  

Lemma . Let A = { ( fa , Ua ) }aeA be an atlas on a set M . Then 

The collection of all subsets U C M such that fa ( U n Ua ) is an open 

subset of Rm is a topology on M and M is a topological manifold in this 

topology .  

If M is a topological manifold and A is an atlas for M such that each fa is 

a homeomorphism , then the topology in part ( a ) coincides with the 

topology of M .  

If M is already a topological manifold , then the collection of all charts ( 

U , f ) on M such that f is a homeomorphism is a topological atlas . It is 

the unique maximal atlas in the sense that it contains every other 

topological atlas . However , we will often need to consider smaller 

atlases , even finite atlases that any atlas determines the topology of M .  

Exercise . Equip each with a topology by showing that the atlas in the 

example is a topological atlas . Conclude that each of these examples is a 

topological manifold .  The Grassmann Manifold is tricky because you 

need an explicit formula for the transition map .  

Any subset S C X of a topological space X inherits a topology from X , 

called the relative topology of S . A subset U0 C S is called relatively 

open in S ( or S - open for short ) if there is an open set U C X such that 

U0 = U fl S . A subset A0 C S is called relatively closed ( or S - closed 

for short ) if there is a closed set A C X such that Ao = A f S . The 

relative topology on S is the finest topology such that the inclusion map 

S ^ X is continuous .  

Exercise . Show that the relative topology satisfies the axioms of a 

topology ( i . e . arbitrary unions and finite intersections of S - open sets 
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are S - open , and the empty set and S itself are S - open ) . Show that the 

complement of an S - open set in S is S - closed and vice versa .  

Exercise Each of the sets defined is a subset of some Euclidean space Rk 

. Show that the topology in Exercise is the relative topology inherited 

from the topology of Rk . 2 

If ~ is an equivalence relation on a topological space X , the quotient 

space 

Y := X / ~ := {[x] | x e X} is the set of all equivalence classes [x] := {x' e 

X | x' ~ x} . The map 

n : X ^ Y 

defined by n ( x ) = [x] will be called the obvious projection . The 

quotient space inherits the quotient topology from Y . Namely , a set V C 

Y is open in this topology iff the preimage n - 1 ( V ) is open in X . This 

topology is the coarsest topology on Y such that projection n : X ^ Y is 

continuous . Since the operation V ^ n - 1 ( V ) commutes with arbitrary 

unions and inter - sections the quotient topology obviously satisfies the 

axioms of a topology .  

Exercise . Show that the atlases for RPm and CPm defined in equip P ( V 

) with the quotient topology inherited from the open set V \ {0} . ( Recall 

that in that exercise V = Km and K = R or C . )  

Smooth Manifolds Defined* 

Let U C Rn and V C Rm be open sets . A map f : U ^ V is called smooth 

iff it is infinitely differentiable , i . e . iff all its partial derivatives 

da1 +   + an f 

a = ( ai , . . . , ak ) e N£ ,  

dxa1 • • • dx°n 

exist and are continuous . In later chapters we will sometimes write C™ ( 

U , V ) for the set of smooth maps from U to V .  
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Definition . Let U C Rn and V C Rm be open sets . For a smooth map f = 

( f1 , . . . , fm ) : U ^ V and a point x e U the derivative of f at x is the 

linear map df ( x ) : Rn ^ Rm  

This linear map is represented by the Jacobian matrix of f at x which will 

also be denoted by  

 ( f ( x )  

dxi ( )  

df ( x ) := 

d fm 

\ dx1  

Note that we use the same notation for the Jacobian matrix and the 

corresponding linear map from Rn to Rm .  

The derivative satisfies the chain rule . Namely , if U C Rn , V C Rm , W 

C R^ are open sets and f : U ^ V and g : V ^ W are smooth maps then g o 

f : U ^ W is smooth and 

d ( g o f ) ( x ) = dg ( f ( x ) ) o df ( x ) : Rn ^ R^  

for every x e U . Moreover the identity map id^ : U ^ U is always smooth 

and its derivative at every point is the identity map of Rn . This implies 

that , if f : U ^ V is a diffeomorphism ( i . e . f is bijective and f and f - 1 

are both smooth ) , then its derivative at every point is an invertible linear 

map . This is why the Invariance of Domain Theorem is easy for 

diffeomorphisms: if f : U ^ V is a diffeomorphism , then the Jacobian 

matrix df ( x ) e Rmxn is invertible for every x e U and so m = n . The 

Inverse Function Theorem is a kind of converse .  

Definition ( Smooth Manifold ) . Let M be a set . A chart on M 

is a pair ( 4> , U ) where U C M and $ is a bijection from U to an open 

subset $ ( U ) C Rm of some Euclidean space . Two charts ( $1 , U1 ) 

and ( $2 , U2 ) are said to be smoothly compatible iff $1 ( U1 n U2 ) and 

$2 ( U n U2 ) are both open in Rm and the transition map 



Notes 

18 
 

$21 = $2 ° $ - 1 : $i ( Ui n U2 ) ^ $2 ( Ui n U2 )   ( 1 - 4 - 2 )  

is a diffeomorphism . A smooth atlas on M is a collection A of charts on 

M any two of which are smoothly compatible and such that the sets U , 

as ( $ , U ) ranges over A , cover M ( i . e . for every p e M there is a 

chart ( $ , U ) e A with p e U ) . A maximal smooth atlas is an atlas 

which contains every chart which is smoothly compatible with each of its 

members . A smooth manifold is a pair consisting of a set M and a 

maximal atlas A on M .  

Lemma . If A is an atlas , then so is the collection A of all charts 

compatible with each member of A . The atlas A is obviously maximal . 

In other words , every atlas extends uniquely to a maximal atlas .  

Proof . Let ( $1 , U1 ) and ( $2 , U2 ) be charts in A and let x e $1 ( U1 n 

U2 ) . Choose a chart ( $ , U ) e A such that $ - 1 ( x ) e U - Then $1 ( U 

n U1 n U2 ) is an open neighborhood of x in Rm and the transition maps 

$ o $ - 1: $1 ( u n U1 n U2 ) ^ $ ( U n U1 n U2 ) ,  

$2 o $ - 1: $ ( U n U1 n U2 ) ^ $2 ( U n U n U2 )  

are smooth by definition of A - Hence so is their composition . This 

shows that the map $2 o $ - 1 : $1 ( U1 n U2 ) ^ $2 ( U1 n U2 ) is smooth 

near x . Since x was chosen arbitrary , this map is smooth - Apply the 

same argument to its inverse to deduce that it is a diffeomorphism - Thus 

A is an atlas - □ 

Definitions are mutatis mutandis the same , so every smooth atlas on a 

set M is a fortiori a topological atlas , i - e - every smooth manifold is a 

topological manifold Moreover the definitions are worded in  such a way 

that it is obvious that every smooth map is continuous -  

Exercise . Show that each of the atlases from the examples in is a smooth 

atlas 

When A is a smooth atlas on a topological manifold M one says that A is 

a smooth STRUCTURE on the ( topological ) manifold M iff A C B , 

where B is the maximal topological atlas on M . When no confusion can 
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result we generally drop the notation for the maximal smooth atlas as in 

the following exercise .  

Exercise . Let M , N , and P be smooth manifolds and f : M ^ N and g : N 

^ P be smooth maps . Prove that the identity map idM is smooth and that 

the composition g o f : M ^ P is a smooth map . ( This is of course an 

easy consequence of the chain rule  

Remark . It is easy to see that a topological manifold can have many 

distinct smooth STRUCTUREs . For example , { ( idR , R ) } and { ( <f , 

R ) } where 0 ( x ) = x3 are atlases on the real numbers which extend to 

distinct smooth STRUCTUREs but determine the same topology . 

However these two manifolds are diffeomorphic via the map x ^ x1 / 3 . 

In the 1950's it was proved that there are smooth manifolds which are 

homeomorphic but not diffeomorphic and that there are topological 

manifolds which admit no smooth STRUCTURE . In the 1980's it was 

proved in dimension m = 4 that there are uncountably many smooth 

manifolds that are all homeomorphic to R4 but no two of them are 

diffeomorphic to each other . These theorems are very surprising and 

very deep .  

A collection of sets and maps between them is called a category if the 

collection of maps contains the identity map of every set in the collection 

and the composition of any two maps in the collection is also in the 

collection . The sets are called the objects of the category and the maps 

are called the morphisms of the category . An invertible morphism whose 

inverse is also in the category is called an isomorphism . Some examples 

are the category of all sets and maps , the category of topological spaces 

and continuous maps ( the isomorphisms are the homeomorphisms ) , the 

category of topological manifolds and continuous maps between them , 

and the category of smooth manifolds and smooth maps ( the 

isomorphisms are the diffeomorphisms ) . Each of the last three 

categories is a subcategory of the preceding one .  

Often categories are enlarged by a kind of "gluing process" . For example 

, the "global" category of smooth manifolds and smooth maps was 

constructed from the "local" category of open sets in Euclidean space and 

smooth maps between them via the device of charts and atlases . ( The 
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chain rule shows that this local category is in fact a category . ) The point 

of Definition is to show that topological manifolds can be defined in an 

manner analogous to the definition we gave for smooth manifolds in 

Definition Other kinds of manifolds ( and hence other kinds of geometry 

) are de - fined by choosing other local categories , i . e . by imposing 

conditions on the transition maps in Equation For example , a real 

analytic manifold is one where the transition maps are real analytic , a 

complex manifold is one whose coordinate charts take values in Cn and 

whose transition maps are holomorphic diffeomorphisms , and a 

symplectic manifold is one whose coor - dinate charts take values in R2n 

and whose transition maps are canonical transformations in the sense of 

classical mechanics . Thus CPn is a complex manifold and RPn is a real 

analytic manifold .  

The Master Plan 

In studying differential geometry it is best to begin with extrinsic 

differential geometry which is the study of the geometry of submanifolds 

of Euclidean space . This is because we can visualize curves and surfaces 

in R3 . However ,  there are a few topics require the more abstract 

definition even to say interesting  things about extrinsic geometry . There 

is a generalization to these manifolds involving a STRUCTURE called a 

Riemannian metric . We will call this generalization intrinsic differential 

geometry . Examples fit into this more general definition so intrinsic 

differential geometry .  

Since an open set in Euclidean space is a smooth manifold the definition 

of a submanifold of Euclidean space is mutatis mutandis the same as the 

definition of a submanifold of a manifold . The definitions in Chapter are 

worded in such a way that it is easy to read them either extrinsically or 

intrinsically and the subsequent chapters are mostly ( but not entirely ) 

extrinsic . Those sections which require intrinsic differential geom - etry 

( or which translate extrinsic concepts into intrinsic ones ) are marked 

with a * .  

1.3 CURVES 
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Definition and Examples 

a cartographer and many terms in modern differential geometry ( chart , 

atlas , map , coordinate system , geodesic A ( parametrized ) curve ( in 

Euclidean space ) is a mapping a: I u  R
n
 , where I is an interval in the 

real line . We also use the notation 

I 9  t — U  a ( t ) e  R
n
 ,  

which emphasizes that a sends each element of the interval I to a certain 

point in R
n
 . We say that a is ( of the class of ) C

k
 provided that it is k 

times continuously differentiable . We shall always assume that a is 

continuous ( C
0
 ) , and whenever we need to differentiate it we will 

assume that a is differentiable up to however many orders that we may 

need .  

Some standard examples of curves are a line which passes through a 

point p e R
n
 , is parallel to the vector v e  R

n
 , and has constant speed ||v|| 

[0 , 2n] 9  t — U  p + tv e  R
n
; a circle 

of radius R in the plane , which is oriented counterclockwise ,  

[0 , 2n] 9  t — U  ( r cos ( t ) , r 

sin ( t ) ) e  R
2
; and the right handed helix ( or 

corkscrew ) given by 

R 9  t — U  ( r cos ( t ) , r sin ( t ) , t ) e  R
3
 .  

Other famous examples include the figure - eight curve 

[0 , 2n] 9  t — U  (  sin ( t ) , sin ( 2t ) ) e  R
2
 ,  

the parabola 

R 9 t  —U ( t ,  t
2
 ) E R

2
 ,   

and the cubic curve 

R 3 t — U  ( t , t
2
 , t

3
 ) e  R

3
 .  

Exercise . Sketch the cubic curve ( Hint: First draw each of the 

projections into the xy , yz , and zx planes ) .  
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Exercise . Find a formula for the curve which is traced by the motion of 

a fixed point on a wheel of radius r rolling with constant speed on a flat 

surface ( Hint: Add the formula for a circle to the formula for a line 

generated by the motion of the center of the wheel . You only need to 

make sure that the speed of the line correctly matches the speed of the 

circle ) .  

Exercise . Let a: I u  R
n
 , and ft: J u R

n
 be a pair of differentiable curves . 

Show that 

 ( 
a  (  t  )  ,  f t  (  t  )  

) J  = ( 
a
'
 (  t  )  ,  

ft
 (  t  )  

) + ( 
a  (  t  )  ,  

ft '
 (  t  )  

and 

 ( a ( t  )  ,  a '  (  t  )  

 

 ( Hint: The first identity follows immediately from the definition of the 

inner - product , together with the ordinary product rule for derivatives . 

The second identity follows from the first once we recall that | | ■  | | := 

(  ■  , -  )  
1  / 2

 ) .  

Exercise . Show that if a has unit speed , i . e . , ||a' ( t ) || = 1 , then its 

velocity and acceleration are orthogonal , i . e . , ( a' ( t ) , a" ( t ) ) = 0 .  

Exercise . Show that if the position vector and velocity of a planar curve 

a: I u R2 

are always perpendicular , i . e . , ( a ( t ) , a' ( t ) ) = 0 , for 

all t E  I , then a ( I ) lies on a circle centered at the origin of R
2
 .  

Exercise . Use the fundamental theorem of Calculus for real valued func 

- tions to show: 

I
b
 

a ( b )  —  a ( a ) = / a '  (  t  ) dt .   

Exercise . Prove that 

||a ( b ) — a ( a ) || < f ||a' ( t ) || dt .  

J  a  



Notes 

23 
 

 ( Hint: Use the fundamental theorem of calculus and the Cauchy - 

Schwarts inequality to show that for any unit vector u E R
n
 ,  

p b  r b  

 ( a ( b ) —  a (  a )  ,  u )  = ( a '  ( t  )  ,  u )  dt  <  I  | |a '  ( t  ) | |dt .   

a a  

Then set u := ( a ( b ) — a ( a ) ) / ||a ( b ) — a ( a ) || .  

The previous exercise immediately yields: 

Theorem ( Mean Value Theorem for curves ) . If a: I ^ R
n
 be a C

1
 

curve ,  then for every t  ,  s E I ,   

||a ( t ) — a ( s ) || < sup ||a'|||t — s| .  

[ t  ,  s]  

Reparametrization 

We say that fl: J ^ R
n
 is a reparametrization of a: I ^ R

n
 provided that 

there exists a smooth bijection 6: I ^ J such that a ( t ) = fl ( 6 ( t ) ) . In 

other words , the following diagram commutes: 

For instance fl ( t ) = ( cot ( 2t ) , sin ( 2t ) ) , 0 < t < n , is a 

reparametrization a ( t ) = ( sin ( t ) , cos ( t ) ) , 0 < t < 2n , with 6: [0 , 

2n] ^ [0 , n] given by 6 ( t ) = t / 2 .  

The geometric quantities associated to a curve do not change under 

reparametrization . These include length and curvature as we define 

below 

 

Length and Arclength 

By a partition P of an interval [a , b] we mean a collection of points {t0 , . 

. . , tn} of [a , b] such that 

a = to  < ti  < ■  ■  ■  < tn = b .  

The approximation of the length of a with respect to P  is 

defined as  
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length[a , P] := ^ ||a ( ti  )  -  a ( ti_i ) | | ,  i=1 

and if Partition[a , b] denotes the set of all partitions of [a , b] , then the 

length of a is given by 

length[a] := sup { length[a , P] |  P €  Partition[a , b] } ,  

where 'sup' denotes the supremum or the least upper bound .  

Exercise . Show that the shortest curve between any pairs of points in R
n 

is the straight line segment joining them . ( Hint: Use the triangle 

inequality ) .  

We say that a curve is rectifiable if it has finite length .  

Exercise* ( Nonrectifiable curves ) . Show that there exists a curve a: [0 , 

1] ^  R
2
 which is not rectifiable ( Hint: One such curve , known as the 

Koch curve , may be obtained as the limit of a sequence of curves ai: [0 , 

1] ^  R defined as follows . Let a0 trace the line segment [0 , 1] . 

Consider an equilateral triangle of sides 1 / 3 whose base rests on the 

middle third of [0 , 1] . Deleting this middle third from the interval and 

the triangle yields the curve traced by ai  .  

Repeating this procedure on each of the 4 subsegments of a1 yields a2 

. Similarly ai + 1 is obtained from ai . You need to show that ai converge 

to a ( continuos ) curve , which may be done using the Arzela - Ascoli 

theorem . It is easy to see that this limit has infinite length , because the 

length of ai  is ( 4 / 3 ) 
j
 . Another example of a nonrectifiable curve a: [0 

, 1] ^  R
2
 is given by a ( t ) := ( t , t sin ( n / t ) ) , when t = 0 , and a ( t ) 

:= ( 0 , 0 ) otherwise . The difficulty here is to show that the length is 

infinite . )  

If a curve is C
1
 , then its length may be computed as the following 

theorem shows . Note also that the following theorem shows that a C
1
 

curve over a compact domain is rectifiable . First we need the following 

fact: 

Theorem ( Length of C
1
 curves ) . Show that if a: I ^ R

n
 is a C

1
 

curve ,  then 

length[a] = J ||a' ( t ) || dt .  
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Proof . It suffices to show that ( i ) length[a , P] is not greater than the 

above integral , for any P G  Partition[a , b] , and ( ii ) there exists a 

sequence PN of partitions such that limN^^ length[a , PN] is equal to the 

integral . The first part follows quickly from Exercise 7 . To prove the 

second part , let PN be a partition given by ti := a + i ( b — a ) / N . 

Recall that , by the definition of integral , for any e > 0 , we may choose 

N large enough so that 

Next note that the mean value theorem for curves yields that  

sup ||a' ( sj ) | —  |a' ( tj  ) | <  sup |a' ( si ) —  a' ( ti 
s
ig

[t
i - 1

 , t
i
]
 

Finally since a' is continuos on the closed interval [a , b] , we may 

suppose that N is so large that 

su
p Il

a
'
 ( 

si
 ) —

 <^77  ---- w 

si€[ti - i , ti] 
2  (  b  —  a  )  

 

which completes the proof .   

Exercise . Compute the length of a circle of radius r , and the length of 

one cycle of the curve traced by a point on a circle of radius r rolling on 

a straight line .  

Exercise ( Invariance of length under reparametrization ) . Show that if fl 

is a reparametrization of a C
1
 curve a , then length[fl] = length[a] , i . e . , 

length is invariant under reparametrization ( Hint: you only need to 

recall the chain rule together with the integration by substitution . )  

Let L := length[a] . The arclength function of a is a mapping s: [n , h] 

^  [0 , L] given by 

s ( t ) := / ||a' ( u ) || du .  

Thus s ( t ) is the length of the subsegment of a which stretches from the 

initial time n to time t .  

Exercise ( Regular curves ) . Show that if a is a regular curve , i . e . , I|a' 

( t ) || = 0 for all t E I , then s ( t ) is an invertible function , i . e . , it is 

one - to - one ( Hint: compute s' ( t ) ) .  
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Exercise ( Reparametrization by arclength ) . Show that every regu - lar 

curve a: [n , h] ^  R
n
 , may be reparametrized by arclength ( Hint: Define 

: [0 , L] ^  R
n
 by ( t ) := a ( s

 - 1
 ( t ) ) , and use the chain rule to show that 

H f l ' l l  = 1; you also need to recall that since f ( f
 - 1

 ( t ) ) = t , then , 

again by chain rule , we have ( f
 - 1

 ) ' ( t ) = 1 / f' ( f
 - 1

 ( t ) ) for any 

smooth function f with nonvanishing derivative . )  

Cauchy's integral formula and curves of constant width  

Let a: ^  R
2
 be a curve and u ( 0 ) := ( cos ( 0 ) , sin ( 0 ) ) be a unit vector 

. The projection of a into the line passing through the origin and parallel 

to u is given by au ( t  )  := ( a ( t ) , u ) u .  

Exercise ( Cauchy's integral formula ) . Show that if a: I ^ R
2
 has 

length L , then the average length of the projections au , over all 

directions , is 2L / n , i . e . ,  

1 f 2^ 2L 

— length[au ( 0 ) ]  

d6 = — . 2n Jo  n 

 ( Hint: First prove this fact for the case when a traces a line segment . 

Then a limiting argument settles the general case , once you recall the 

definition of length . )  

As an application of the above formula we may obtain a sharp 

inequality involving width of closed curves . The width of a set X C  R
2
 

is the distance between the closest pairs of parallel lines which contain X 

in between them . For instance the width of a circle of radius r is 2r . A 

curve a: [a , b] ^ R
2
 is said to be closed provided that a  ( a ) = a 

( b )  .  We should also mention that a is a C
k
 closed curve 

provided that the ( one - sided ) derivatives of a match up at a and b .  

Exercise ( Width and length ) . Show that if a: [a , b] ^  R
2
 is a closed 

curve with width w and length L , then 

L 

w <  — . n 

Note that the above inequality is sharp , since for circles w = L / n . 

Are there other curves satisfying this property? The answer may surprise 
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you . For any unit vector u ( 0 ) , the width of a set X C  R
2
 in the 

direction u , wu , is defined as the distance between the closest 

pairs of lines which contain  X in between them .  We say that  

a closed curve in the plane has  constant width provided that wu is 

constant in all directions .  

Exercise . Show that if the equality in holds then a is a curve of constant 

width .  

The last exercise would have been insignificant if circles were the 

only curves of constant width , but that is not the case: 

Exercise ( Reuleaux triangle ) . Consider three disks of radius r whose 

centers are on an equilateral triangle of sides r , see Figure 2 . Show that 

the curve which bounds the intersection of these disks has constant 

width . Also show that similar constructions for any regular polygon 

yield curves of constant width .  

It can be shown that of all curves of constant width w , Reuleaux 

triangle has the least are . This is known as the Blaschke - Lebesque 

theorem . A recent proof of this result has been obtained by Evans 

Harrell .  

Note that the Reuleaux triangle is not a C
1
 regular curve for it has 

sharp corners . To obtain a C
1
 example of a curve of constant width , we 

may take a curve which is a constant distance away from the Reuleaux 

triangle . Further , a C^  example may be constructed by taking an 

evolute of a deltoid .  

1.4 BASICS OF EUCLIDEAN GEOMETRY 

By R we shall always mean the set of real numbers . The set of all n - 

tuples of real numbers R
n
 := { ( p

3
 ,  .  .  .  ,  p

n
 ) | p

i
 E R} is called 

the Euclidean n - space . So we have 

p e R
n
 ^ p = ( p

1
 , . . . , p

n
 ) , p

i
 E R .  
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Let p and q be a pair of points ( or vectors ) in R
n
 .  We define p + q := 

( p
1
 + q

1
 ,  .  .  .  ,  p

n
 + q

n
 ) .  Further , for any scalar r E R , we 

define rp := ( rp
1
 ,  .  .  .  ,  rp

n
 ) .  It is easy to show that the operations 

of addition and scalar multiplication that we have defined turn R
n
 into a 

vector space over the field of real numbers .  Next we define the standard 

inner product  on R
n
 by 

 ( p , q ) = p
1
q

1
 + .  .  .  + p

n
 q

n
 .  

Note that the mapping ( ■ ,  ■ ) : R
n
 x R

n
 ^ R is linear in each variable 

and is symmetric . The standard inner product induces a norm on R
n
 

defined by 

IIpII  
:
= 

( 
p

 , 
p

 ) 2
 .  

If p E R ,  we usually write |p | instead of | |p | |  .   

The first nontrivial fact in Euclidean geometry , is the following 

important result which had numerous applications: 

Theorem . ( The Cauchy - Schwartz inequality )  For all p and 

q in R
n  | ( 

p
 , 

q
 ) |

 ^ IIpH  l lqH -  

The equality holds if and only if p = Aq for some A E R .  

Since this is such a remarkable and far reaching result we will include 

here three different proofs . The first proof is quite short and slick , but 

also highly nontransparent , i . e . , it is not easy to see how someone 

could come up with that . The second proof is perhaps more reasonable , 

but also more advanced . The third proof is the most elementary , but 

then again it is quite tricky .  

Proof I ( Quadratic Formula  ) .  If p = Aq it is clear that equality 

holds . Oth - erwise , let f ( A ) := ( p —  Aq ,  p —  Aq ) .  Then f 

( A ) > 0 . Further , note that f  (  A ) may be written as a 

quadratic equation in A: 

f ( A ) = | |p | |
2
 —  2A ( p , q ) + A

2
 

Hence its discriminant must be negative: 

4 ( p , q )  
2
 —  4 | |p | |

2
| |q | |

2
 < 0 



Notes 

29 
 

which completes the proof .   

Proof II ( Lagrange Multipliers ) . Again suppose that  p = Aq  . 

Then 

 ( p
 ,  

q  ) 
= ll

p
IIM ( H 

Thus it suffices to prove that for all unit vectors p and q we have 

|  (  
p

 ,  
q

 )  |
 < 

1
 

and equality holds if and only if p = ±q . This may be proved by using 

the method of lagrangne multipliers to find the maximum of the 

function ( x , y )  subject to the constraints | |x | |  = 1 and | |y| |  = 1 . 

More explicitly we need to find the critical points of 

f  (  x  ,  y  ,  A
i

 ,  A
2

 )  :
= 

( x  ,  y  ) 
+ 

A
i

 (  
|l

x
l |

2  — 1 ) 
+ 

A
2

 ( 
II

y
 II

2  — 1 ) 
 

n 

=  y y
 ( x

iVi + 
A
1

x2
 + 

A
2y

2 )  —  A
1 

—  A
2 .  

i=1 

At a critical point we must have 0 = 5f /  5x i  = y i  + 2A1x i  ,  which 

yields that V = ±x .  

Proof ( Induction )  .  First note that the case n = 1 is trivial . For n = 

2 , the proof amounts to showing that 

 ( piqi  + P2q2
 )  2

 < ( p? + p2
 ) ( 

q
2
 + q

2 ) 2
 -  

This is also easily verified by the expansion and simplification of both 

sides which reduces the above inequality to ( p1q2  —  q2p1  ) 
2
 > 0 . 

Now suppose that the inequality we like to prove holds for n . Then to 

prove this for n + 1 note that The first inequlity above is just the 

inductive step , i . e . , the assumption that the inequality we want to 

prove holds for n ,  and the second inequality above is just an application 

of the case n = 2 which we established earlier . □ 

There is yet another proof of the Cauchy - Schwartz ineqaulity which 

com - bines ideas from the first and second proofs mentioned above , but 

avoids using either the quadratic formula or the Lagrange multipliers: 

Exercise . ( The simplest proof of the Cauchy - Schwartz 
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inequality )  

Assume , as in the second proof above , that | |p | |  = 1 = | |q | |  and note 

that 

0
 < lip 

—
 q ) q||

2
 = ( p 

—
 ( p

 , 
q ) q

 , 
p 

—
 q ) q 

whenever p = Aq . Expanding the right hand side yields the 

desired result . The standard Euclidean distance in R
n
 is given by 

dist ( p , q ) := ||p — q|| .  

An immediate application of the Cauchy - Schwartz inequality  

Exercise . ( The triangle inequality ) Show that 

dist  ( p , q ) + dist ( q , r ) ^ dist ( p , r )  

for all p , q in R
n
 .   

By a metric on a set X we mean a mapping d: X x X  ^ R such that 

1. d ( p , q )  ^ 0 , with equality if and only if p = q .  

2. d ( p , q ) = d ( q ,  p ) .   

3. d  (  p  ,  q  )  + d  (  q  ,  r  )  ^ d  (  p  ,  r ) .   

These properties are called , respectively , positive - definiteness , 

symmetry , and the triangle inequality . The pair ( X ,  d ) is called a 

metric space .  Using the above exercise , one immediately checks 

that ( R
n
 ,  dist ) is a metric space . Geometry , in its broadest 

definition , is the study of metric spaces , and Euclidean 

Geometry ,  in the modern sense , is the study of the metric space ( R
n
 

,  dist ) . Finally , we define the angle between a pair of nonzero vectors 

in R
n
 by 

an
g

le
fe q

 )  :
=

cos_ 1
 rrf^r•  

Note that the above is well defined by the Cauchy - Schwartz inequality . 

Now we have all the necessary tools to prove the most famous result in 

all of mathematics: 

Exercise . ( The Pythagorean theorem ) Show that in a right 

triangle the square of the length of the hypotenuse is equal to the sum of 

the squares of the length of the sides .  
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Next let us define the angle defined by 3 points p , o , q as 

Zpoq := angle ( p - o , q  — o ) = cos - „
<P —

 0 '?  
—

 °
}
„ •  

IP —  o | |q  —  o | 

Exercise . Suppose that p , o ,  q lie on a line and o lies between p 

and q . Show that then Zpoq = n .  

We say that a set L C R
n
 is a line if there exists a pair of points p ,  

q  E R
n
 such that 

L = {p + t ( p  — q ) | t  E R }•  

A pair of lines in R
2
 are called parallel  if they do not intersect: 

Exercise . ( Playfair 's Axiom ) Show that , in R
2
 ,  through every 

point p outside a line L there passes one and only one line parallel 

to L .  

The Playfair's Axiom is equivalen to 

Exercise . ( Euclid 's Fifth Postulate  ) Suppose that two parallel 

lines L , L in R
2
 are intersected by a third line L" . Then the acute 

angles formed by these three lines are equal .  

The next exercise is concerned with another corner stone of 

Euclidean Geometry , which may be proved using the last three 

exercises: 

Exercise . ( Sum of the angles in a triangle  ) Show that the sum 

of 

the angles in a triangle is n ( Hint: through one of the vertices draw a 

line parallel to the opposite side ) .  

The most important result in classical differential geometry is the 

Gauss - Bonnet theorem , which generalizes the fact proved in the 

last exercises to regions which lie on a curved surface .  

Check your Progress 1 

Discuss Differential Geometry  

________________________________________________________ 
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________________________________________________________ 

________________________________________________________ 

Discuss Curves 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

1.5 LET US SUM UP 

In this unit we have discussed the definition and example of Differential 

Geometry … Cartography And Differential Geometry, Curves , Basics 

Of Euclidean Geometry 

 

1.6 KEYWORDS 

Differential Geometry … Cartography And Differential Geometry….. a 

cartographer and many terms in modern differential geometry ( chart , 

atlas , map , coordinate system , geodesic  

Curves ….. A ( parametrized ) curve ( in Euclidean space ) is a mapping 

a: I u  R
n 

Basics Of Euclidean Geometry …. By R we shall always mean the set of 

real numbers . The set of all n - tuples of real numbers R
n
 := { ( p

4
 ,  .  

.  .  ,  p
n
 ) | p

i
 E R} 

 

1.7 QUESTIONS FOR REVIEW 

Explain Differential Geometry 

Explain Cartography And Differential Geometry 
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Explain Curves 

1.8 REFERENCE 

 

Differential Geometry, Differential Geometry & Application, 

Introduction to Defferential Geometry, Basic of Differential Geometry. 

 

1.9 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Differential Geometry ( Answer for Check your Progress -  1 Q ) 

Cartography And Differential Geometry ( Answer for Check your 

Progress -  1 Q ) 

Curves  ( Answer for Check your Progress -  1 Q )  
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UNIT-II: DIFFERENTIAL 

GEOMETRY AND DIFFERENTIAL 

TOPOLOGY  

 

STRUCTURE 

 

2.0 Objectives 

2.1 Introduction 

2.2 Differential Geometry And Differential Topology  

2.3 Tangent Spaces And Derivatives 

2.4 The Inverse Function Theorem 

2.5 Let Us Sum Up 

2.6 Keywords 

2.7 Questions For Review 

2.8 Answers To Check Your Progress 

2.9 Reference 

2.0 OBJECTIVES 

 

After studying this unit , you should be able to:  

 Understand about Differential Geometry And Differential 

Topology  

 Tangent Spaces And Derivatives  

 The Inverse Function Theorem 

2.1 INTRODUCTION 

Differential geometry arose and developed as a result of and in 

connection to the mathematical analysis of curves and surfaces 

Mathematical analysis of curves and surfaces had been developed to 
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answer some of unanswered questions that appeared in calculus like the 

reasons for relationships between complex shapes and curves , series and 

analytic functions Differential Geometry And Differential Topology , 

Tangent Spaces And Derivatives , The Inverse Function Theorem 

2.2 DIFFERENTIAL GEOMETRY AND 

DIFFERENTIAL TOPOLOGY  

Foundations 

This chapter introduces various fundamental concepts that are central to 

the fields of differential geometry and differential topology . Both fields 

concern the study of smooth manifolds and their diffeomorphisms . The 

chapter begins with an introduction to submanifolds of Euclidean space 

and smooth maps to tangent spaces and derivatives and to submanifolds 

and embeddings . In we move on to vector fields and flows and introduce 

the Lie bracket of two vector fields . Lie groups and their Lie algebras , 

in the extrinsic setting , are the subject introduce vector bundles over a 

manifold as subbundles on a trivial bundle we prove the theorem of 

Frobenius . The last two sections of this chapter are concerned with 

carrying over all these concepts from the extrinsic to the intrinsic setting  

 .  

Submanifolds of Euclidean Space 

To carry out the Master Plan we must extend the definition of smooth 

map to maps f : X ^ Y between subsets X c Rk and Y c R which are not 

necessarily open . In this case a map f : X ^ Y is called smooth if for each 

x0 <= X there exists an open neighborhood U c Rk of xo and a smooth 

map F : U ^ R that agrees with f on U n X . A map f : X ^ Y is called a 

diffeomorphism if f is bijective and f and f - 1 are smooth . When there 

exists a diffeomorphism f : X ^ Y then X and Y are called diffeomorphic 

. When X and Y are open these definitions coin - cide with the usage in  

Exercise ( Chain Rule ) . Let X C Rk , Y C R^ , Z C Rm be arbitrary 

subsets . If f : X ^ Y and g : Y ^ Z are smooth maps then so is the 

composition g o f : X ^ Z . The identity map id : X ^ X is smooth .  
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Exercise . Let E C Rk be an m - dimensional linear subspace and let vi , . 

. . , vm be a basis of E . Then the map f : Rm ^ E defined by f ( x ) := mi 

x - i - Vi is a diffeomorphism .  

Definition . Let k , m <= No . A subset M C Rk is called a smooth m - 

 

neighborhood U C Rk such that U n M is diffeomorphic to an open sub - 

set Q C Rm . A diffeomorphism 

f : U n M ^ Q 

is called a coordinate chart of M and its inverse 

f := f - i : Q ^ U n M 

is called a ( smooth ) parametrization of U n M .  

 

 

Figure A coordinate chart f : U n M ^ Q .  

 

In Definition we have used the fact that the domain of a smooth map can 

be an arbitrary subset of Euclidean space and need not be open . The 

term m - manifold in Rk is short for m - dimensional sub - manifold of 

Rk . In keeping with the Master Plan we will sometimes say manifold 

rather than submanifold of Rk to indicate that the context holds in both 

the intrinsic and extrinsic settings .  

Lemma If M C Rk is a nonempty smooth m - manifold then m < k .  

Proof .  , choose a coordinate chart f : U n M ^ Q 

 , and denote its in - 

verse by f := f - i :Q ^ U n M . Shrinking U , if necessary , we may as - 

sume that f extends to a smooth map T : U ^ Rm . This extension satis - 

fies T ( f ( x ) ) = f ( f ( x ) ) = x and hence dt ( f ( x ) ) df ( x ) = id : Rm ^ 

Rm for  , by the chain rule . Hence the derivative df ( x ) : Rm ^ 
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Rk is in - jective for all x <= Q , and hence m < k because Q is nonempty 

. □ 

Example . Consider the 2 - sphere 

M := S2 = { ( x , y , z ) e R3 | x2 + y2 + z2 = 1} depicted and let U C R3 

and Q C R2 be the open sets 

U := { ( x , y , z ) e R3 | z > 0} , Q := { ( x , y ) e R2 | x2 + y2 < 1} . The 

map 0 : U fl M ^ Q given by 

0 ( x , y , z ) := ( x , y ) is bijective and its inverse ^ := 0 - 1 : Q ^ U f M 

is given by 

^ ( x , y ) = ( x , y , \ / 1 - x2 - y2 ) .  

Since both 0 and ^ are smooth , the map 0 is a coordinate chart on S2 . 

Similarly , we can use the open sets z < 0 , y > 0 , y < 0 , x > 0 , x < 0 to 

cover S2 by six coordinate charts . Hence S2 is a manifold . A similar 

argument shows that the unit sphere Sm C Rm + 1 is a manifold for 

every integer m > 0 .  

 

Figure : The 2 - sphere and the 2 - torus .  

Example . Let Q C Rm be an open set and h : Q ^ Rk m be a smooth map 

. Then the graph of h is a smooth submanifold of Rm x Rk - m = Rk: 

M = graph ( h ) := { ( x , y ) | x e Q , y = h ( x ) } .  

It can be covered by a single coordinate chart 0 : U f M ^ V where U := 

Q x Rk - m , 0 is the projection onto Q , and ^ := 0 - 1 : Q ^ U is given by 

^ ( x ) = ( x , h ( x ) ) for x e Q .  

Exercise ( The case m = 0 ) . Show that a subset M C Rk is a 0 - 

dimensional submanifold if and only if M is discrete , i . e . for every p e 

M there is an open set U C Rk such that U f M = {p} .  
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Exercise ( The case m = k ) . Show that a subset M C Rm is an m - 

dimensional submanifold if and only if M is open .  

Exercisea ( Products ) . If Mi C Rki is an mi - manifold for i = 1 , 2 

show that Mi x M2 is an ( mi + m2 ) - dimensional submanifold of Rkl + 

k2 . Prove by induction that the n - torus Tn is a smooth submanifold of 

Cn .  

The next theorem characterizes smooth submanifolds of Euclidean space 

. In particular condition ( iii ) will be useful in many cases for verifying 

the manifold condition . We emphasize that the sets U0 := U n M that 

appear in Definition are open subsets of M with respect to the relative 

topology that M inherits from the ambient space Rk and that such 

relatively open sets are also called M - open  

Theorem ( Manifolds ) . Let m and k be integers with 0 < m < k . Let M 

C Rk be a set and p0 E M . Then the following are equivalent .  

There exists an M - open neighborhood U0 C M of p0 and a diffeomor - 

phism 

fo : Uo ^ Q0 

onto an open set Q0 C Rm .  

There exist open sets U , Q C Rk and a diffeomorphism f : U ^ Q such 

that p0 E U and 

f ( U n m ) = Q n ( Rm X {0} ) .  

There exists an open set U C Rk and a smooth map f : U ^ Rk - m such 

that p0 E U , the differential df ( p ) : Rk ^ Rk - m is surjective for every 

p E U n M , and 

U n M = f - 1 ( 0 ) = {q E U | f ( q ) =0} .  

Moreover , if ( i ) holds then the diffeomorphism f : U ^ Q in ( ii ) can be 

chosen such that U n M C U0 and f ( p ) = ( f0 ( p ) , 0 ) for every p E U 

n M .  

Proof . First assume ( ii ) and denote the diffeomorphism in ( ii ) by 
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f = ( fi , f2 , . . . , fk ) : U ^ Q C Rk .  

Then part ( i ) holds with U0 := U n M , Q0 := {x E Rm | ( x , 0 ) E Q} , 

and 

f0 := ( f 1 , . . . , fm ) |u0 : U0 ^ Q0 ,  

and part ( iii ) holds with f := ( fm + 1 , . . . , fk ) : U ^ Rk - m . This 

shows that part ( ii ) implies both ( i ) and ( iii ) .  

We prove that ( i ) implies ( ii ) . Let 0o : Uo ^ Qo be the coordinate chart 

in part ( i ) , let ^0 := 0 - 1 : Qo ^ U0 be its inverse , and denote 

xo := 0o ( po ) e Qo .  

Then , by Lemma the derivative d^o ( xo ) : Rm ^ Rk is an injective 

linear map . Hence there exists a matrix B e Rkx ( k - m ) such that 

det ( [d^o ( xo ) B] ) = 0 .  

Define the map ^ : Qo x Rk - m ^ Rk by 

■0 ( x , y ) := ^o ( x ) + By .  

Then the k x k - matrix d^ ( xo , 0 ) = [d^o ( xo ) B] e Rkxk is 

nonsingular , by choice of B . Hence , by the Inverse Function Theorem , 

there exists an open neighborhood Q C Qo x Rk - m of ( xo , 0 ) such that 

U := ^ ( Q ) C Rk is open and ^|^ : U ^ U is a diffeomorphism . In 

particular , the restriction of ^ to Q is injective . Now the set 

Uo := |^o ( x ) | x e Q o , ( x , 0 ) e Q j = |p e Uo | ( 0o ( p ) , 0 ) e Q j c M 

is M - open and contains po . Hence , by the definition of the relative 

topology , there exists an open set W C Rk such that Uo = W n M . 

Define 

U := U n W , Q:=Q n ^ - 1 ( W ) .  

Then U n M = Uo and ^ restricts to a diffeomorphism from Q to U . Now 

let ( x , y ) e . We claim that 

■0 ( x , y ) e M y = 0 .   
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If y = 0 then obviously ^ ( x , y ) = ^o ( x ) e M . Conversely , let ( x , y ) 

e Q and suppose that p := ^ ( x , y ) e M . Then p e U n M = U n W n M = 

Uo C Uo and hence ( 0o ( p ) , 0 ) e Q , by definition of Uo . This implies 

^ ( 0o ( p ) , 0 ) = ^o ( 0o ( p ) ) = p = ^ ( x , y ) .  

Since the pairs ( x^y ) and ( 0o ( p ) , 0 ) both belong to the set Q and the 

re - striction of ^ to U is injective we obtain x = 0o ( p ) and y = 0 . It 

follows from ( 2 . 1 . 1 ) that the map 0 := ( ^|q ) - 1 : U ^ Q satisfies 0 ( 

U n M ) = { ( x , y ) e Q | ^ ( x , y ) e M} = Q n ( Rm x {0} ) . Thus we 

have proved that ( i ) implies ( ii ) .  

We prove that ( iii ) implies ( ii ) . Let f : U ^ Rk - m be as in part ( iii ) . 

 ( p0 ) : Rk ^ Rk - m is a surjective 

linear map . Hence there exists a matrix A <= Rmxk  

Then det ( d0 ( po ) ) = 0 . Hence , by the Inverse Function Theorem , 

there exists an open neighborhood U' C U of p0 such that Q' := 0 ( U' ) is 

an open subset of Rk and the restriction 

0' := 0|w : U' ^ Q' 

is a diffeomorphism . In particular , the restriction 0|w< is injective . 

Moreover , it follows fromn the assumptions on f and the definition of 0 

that 

U' n M = {p <= U'\ f ( p ) =0} = {p <= U'\ 0 ( p ) <= Rm x {0}} 

and hence 

0' ( U' n M ) = Q' n ( Rm x {0} ) .  

Hence the diffeomorphism 0' : U' ^ Q' satisfies the requirements of part ( 

ii ) . This proves Theorem .  □ 

Definition . Let U C Rk be an open set and f : U ^ R^ be a smooth 

function . An element c <= R^ is called a regular value of f if , for all p 

<= U , we have 

f ( p ) = c =^ df ( p ) : Rk ^ R^ is surjective .  
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Otherwise c is called a singular value of f . Theorem asserts that , if c is a 

regular value of f the preimage 

M := f - 1 ( c ) = {p <= U | f ( p ) = c} 

is a smooth ( k — <= ) - dimensional submanifold of Rk .  

 

2.3 TANGENT SPACES AND 

DERIVATIVES 

The main reason for first discussing the extrinsic notion of embedded 

manifolds in Euclidean space as explained in the Master Plan is that the 

concept of a tangent vector is much easier to digest in the embedded 

case: it is simply the derivative of a curve in M , understood as a vector 

in the ambient Euclidean space in which M is embedded .  

Tangent Space 

Definition Let M c Rk be a smooth m - dimensional manifold and fix a 

point p e M . A vector v e Rk is called a tangent vector of M at p if there 

exists a smooth curve y : R ^ M such that 

7 ( 0 ) = p , 7 ( 0 ) = v .  

The set 

TpM := {Y ( 0 ) | 7 : R ^ M is smooth , 7 ( 0 ) = p} 

of tangent vectors of M at p is called the tangent space of M at p .  

Theorem below shows that TpM is a linear subspace of Rk . As does any 

linear subspace it contains the origin; it need not actually intersect M . Its 

translate p + TpM touches M at p; this is what you should visualize for 

TpM .  

Remark Let p e M be as in Definition and let v e Rk . Then 

T M J > 0 : ( - <= , <= ) ^ M such that 

V e p \ 7 is smooth , 7 ( 0 ) = p , y ( 0 ) = v .  
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To see this suppose that y : ( —<= , <= ) ^ M is a smooth curve with y ( 

0 ) = p and Y ( 0 ) = v . Define 7 : R ^ M by 

7 ( t ) := y ( / <=t ^ , t e R .  

Y ( ) Y\V<=2 + fV ,  

Then 7 is smooth and satisfies 7 ( 0 ) = p and "7 ( 0 ) = v . Hence v e 

TpM .  

Theorem ( Tangent spaces ) . Let M C Rk be a smooth m - dimen - sional 

manifold and fix a point p e M . Then the following holds .  

 ( i ) Let U0 C M be an M - open set with p e U0 and let f0 : U0 ^ Q0 be 

a diffeomorphism onto an open subset Q0 C Rm . Let x0 := f0 ( p ) and 

let f0 := f - 1 : Q0 ^ U0 be the inverse map . Then 

TPM = im ( #0 ( x0 ) : Rm ^ Rk )  

Let U , Q C Rk be open sets and f : U ^ Q be a diffeomorphism such that 

p e U and f ( U n M ) = Q n ( Rm x {0} ) . Then 

TPM = df ( p ) - 1 ( Rm x {0} ) .  

Let U C Rk be an open neighborhood of p and f : U ^ Rk - m be a 

smooth map such that 0 is a regular value of f and U n M = f - 1 ( 0 ) . 

Then 

TpM = ker df ( p ) .  

TpM is an m - dimensional linear subspace of Rk .  

Proof . Let f0 : Q0 ^ U0 and x0 e Q0 be as in ( i ) and let f : U ^ Q be as 

in ( ii ) . We prove that 

imdf0 ( x0 ) C TpM C df ( p ) - 1 ( Rm x {0} ) .   

To prove the first inclusion choose a constant r > 0 such that 

Br ( x0 ) := {x e Rm | |x — x0| < r} C Q0 .  

Now let f e Rm and choose e > 0 so small that 

e |f| < r .  
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Then x0 + tf e Q0 for all t e R with |t| < e . Define 7 : ( —e , e ) ^ M by 

Y ( t ) := f0 ( x0 + tf ) for — e < t < e .  

Then 7 is a smooth curve in M satisfying 

^0 ( x0 + tf ) = df 0 ( x0 ) f .  

To prove the second inclusion in we fix a vector v <= TpM . Then , by 

definition of the tangent space , there exists a smooth curve 7 : R ^ M 

such that y ( 0 ) = p and y ( 0 ) = v . Let U C Rk be as in ( ii ) and choose 

e > 0 so small that y ( t ) <= U for |t| < e . Then 

0 ( Y ( t ) )  ( U n M ) C Rm x {0} 

for |t| < e and hence 

d 

# ( p ) v = # ( y ( 0 ) ) 7 ( 0 ) = da 

0 ( Y ( t ) ) <= Rm x {0} .  

t=0 

This shows that v <= d^ ( p ) - 1 ( Rm x {0} ) and thus we have proved .  

Now the sets im d^0 ( x0 ) and d^ ( p ) - 1 ( Rm x {0} ) are both m - 

dimensional linear subspaces of Rk . Hence it follows from that these 

subspaces agree and that they both agree with TpM . Thus we have 

proved asser - tions ( i ) , ( ii ) , and ( iv ) .  

We prove ( iii ) . If v <= TpM then there is a smooth curve y : R ^ M 

such that y ( 0 ) = p and 7 ( 0 ) = v . For t sufficiently small we have y ( t 

) <= U , where U C Rk is the open set in ( iii ) , and f ( y ( t ) ) = 0 . 

Hence 

d 

df ( p ) v = df ( y ( 0 ) ) y ( 0 ) = djt 

and this implies TpM C ker df ( p ) . Since TpM and the kernel of df ( p ) 

are both m - dimensional linear subspaces of Rk we deduce that TpM = 

ker df ( p ) . □ 
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Example . Let A = AT <= Rkxk be a nonzero matrix as in Example and 

let c = 0 . Then , by Theorem ( iii ) , the tangent space of the manifold 

M = Ix <= Rk | xTAx = c} at a point x <= M is the k — 1 - dimensional 

linear subspace 

TxM = {<= <= Rk | xTA<= = 0} .  

Example . As a special case with A = 1 and c = 1 we find that the tangent 

space of the unit sphere Sm C Rm + 1 at a point x <= Sm is the 

orthogonal complement of x: 

TxSm = x± = {<= <= Rm + 11 ( x , <= ) =0} .  

Here ( x , <= ) = ^m=0 xi<=i denotes the standard inner product on Rm + 

1 .  

Exercise . What is the tangent space of the 5 - manifold 

M := { ( x , y ) € R3 x R3 | \x — y\ = r} at a point ( x , y ) € M? 

Example . Let H ( x , y ) := 2 \y\2 + V ( x ) be as in and let c be a regular 

value of H . If ( x , y ) € M := H - 1 ( c ) Then 

T ( x , y ) M = { ( <= , n ) € Rn x Rn \ <y , n ) + ( VV ( x ) , <= ) = 0} .  

Here VV := ( dV / dx1 , . . . , dV / dxn ) : Rn ^ Rn denotes the gradient of 

V .  

Exercise . The tangent space of SL ( n , R ) at the identity matrix is the 

space { } 

sl ( n , R ) := TiSL ( n , R ) = {<= € Rnxn \ trace ( <= ) = 0} 

of traceless matrices .  

Example The tangent space of O ( n ) at g is 

TgO ( n ) = {v € Rnxn \ gTv + vTg = 0} .  

In particular , the tangent space of O ( n ) at the identity matrix is the 

space of skew - symmetric matrices 

o ( n ) := TiO ( n ) = {<= € Rnxn \ <=T + <= = 0} 
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To see this , choose a smooth curve R ^ O ( n ) : t ^ g ( t ) . Then g ( t ) 

Tg ( t ) = 1 for all t € R and , differentiating this identity with respect to t 

, we ob - tain g ( t ) Tg ( t ) + g ( t ) Tg ( t ) = 0 for every t . Hence every 

matrix v € TgO ( n ) satisfies the equation gTv + vTg = 0 . With this 

understood , the claim fol - lows from the fact that gTv + vTg = 0 if and 

only if the matrix <= := g - 1v is skew - symmetric and that the space of 

skew - symmetric matrices in Rnxn has dimension n ( n — 1 ) / 2 .  

Exercise . Let Q C Rm be an open set and h : Q ^ Rk - m be a smooth 

map . Prove that the tangent space of the graph of h at a point ( x , h ( x ) 

) is the graph of the differential dh ( x ) : Rm ^ Rk - m: 

M = { ( x , h ( x ) ) \ x € Q} , T ( x , h ( x ) ) M = { ( <= dh ( x ) <= ) \ <= 

€ Rm} .  

Exercise ( Monge coordinates ) . Let M be a smooth m - manifold in Rk 

and suppose that p e M is such that the projection TpM ^ Rm x {0} is 

invertible . Prove that there exists an open set Q C Rm and a smooth map 

h : Q ^ Rk - m such that the graph of h is an M - open neighborhood of p 

. Of course , the projection TpM ^ Rm x {0} need not be invertible , but 

it must be invertible for at least one of the ( m ) choices of the m 

dimensional coordinate plane . Hence every point of M has an M - open 

neighborhood which may be expressed as a graph of a function of some 

of the coordinates in terms of the others  

 

Derivative 

A key purpose behind the concept of a smooth manifold is to carry over 

the notion of a smooth map and its derivatives from the realm of first 

year analysis to the present geometric setting . Here is the basic 

definition . It appeals to the notion of a smooth map between arbitrary 

subsets of Euclidean spaces  

Definition . Let M C Rk be an m - dimensional smooth manifold and 

f : M ^ R* 

be a smooth map . The derivative of f at a point p e M is the map 
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df ( p ) : TpM ^ R* 

defined as follows . Given a tangent vector v e TpM choose a smooth 

curve 

Y : R ^ M 

satisfying 

Now define the vector by 

Y ( 0 ) = p , 7 ( 0 ) = v . df ( p ) v e R* 

f ( yM ) = lim f ( Y ( h ) { - f ( p ) .  

t=0 h^° h 

That the limit on the right in equation exists follows from our 

assumptions . We must prove , however , that the derivative is well 

defined , i . e . that the right hand side of depends only on the tangent 

vector v and not on the choice of the curve 7 used in the definition . This 

is the content of the first assertion in the next theorem .  

Theorem ( Derivatives ) . Let M C Rk be an m - dimensional smooth 

manifold and f : M ^ R be a smooth map . Fix a point p e M . Then the 

following holds .  

The right hand side of is independent of 7 .  

The map df ( p ) : TpM ^ R is linear .  

If N C R is a smooth n - manifold and f ( M ) C N then 

df ( p ) TpM C Tf ( p ) N .  

 ( Chain Rule ) Let N be as in ( iii ) , suppose that f ( M ) C N , and let g : 

N ^ Rd be a smooth map . Then 

d ( g o f ) ( p ) = dg ( f ( p ) ) o df ( p ) : TpM ^ Rd .  

If f = id : M ^ M then df ( p ) = id : TpM ^ TpM .  
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Proof . We prove ( i ) . Let v e TpM and 7 : R ^ M By definition there is 

an open neighborhood U C Rk of p and a smooth map F : U ^ R^ such 

that 

F ( p' ) = f ( p' ) for all p e U n M .  

Let dF ( p ) e R^xk denote the Jacobian matrix ( i . e . the matrix of all 

first partial derivatives ) of F at p . Then , since 7 ( t ) e U n M for t 

sufficiently small , we have 

dF ( p ) v = dF ( 7 ( 0 ) ) 7 ( 0 ) d dt d dt 

The right hand side of this identity is independent of the choice of F 

while the left hand side is independent of the choice of 7 . Hence the 

right hand side is also independent of the choice of 7 and this proves ( i ) 

. Assertion ( ii ) follows immediately from the identity 

df ( p ) v = dF ( p ) v 

just established .  

Assertion ( iii ) follows directly from the definitions . Namely , if 7 is as 

in Definition then 

P := f o 7 : R ^ N is a smooth curve in N satisfying 

P ( 0 ) = f ( 7 ( 0 ) ) = f ( p ) =: q , ( 3 ( 0 ) = df ( p ) v =: w .  

Hence w <= TqN . Assertion ( iv ) also follows directly from the 

definitions . If g : N ^ Rd is a smooth map and P , q , w are as above then 

d dt 

g ( P ( t ) )  

t=0 

= dg ( q ) w = dg ( f ( p ) ) df ( p ) v .  

and this proves ( iv ) . Assertion ( v ) follows directly from the 

definitions and this proves Theorem .  □ 

Corollary ( Diffeomorphisms ) . Let M C Rk be a smooth m - mani - fold 

and N C R^ be a smooth n - manifold and let f : M ^ N be a diffeomor - 
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phism . Then m = n and the differential df ( p ) : TpM ^ Tf ( p ) N is a 

vector space isomorphism with inverse 

df ( p ) - 1 = df - l ( f ( p ) ) : Tf ( p ) N ^ TpM 

for all p <= M .  

Proof . Define g := f - 1 : N ^ M so that 

g o f = idM , f o g = idN .  

Then it follows from Theorem that , for p <= M and q := f ( p ) <= N , we 

have dg ( q ) o df ( p ) = id : TPM ^ TPM , df ( p ) o dg ( q ) = id : TqN ^ 

TqN . Hence df ( p ) : TpM ^ TqN is a vector space isomorphism with 

inverse 

dg ( q ) = df ( p ) - 1 : TqN ^ TpM .  

Hence m = n and this proves Corollary .  

 

2.4 THE INVERSE FUNCTION THEOREM 

 

Corollary is analogous to the corresponding assertion for smooth maps 

between open subsets of Euclidean space . Likewise , the inverse 

function theorem for manifolds is a partial converse of Corollary  

 

Figure : The Inverse Function Theorem .  

 

Theorem ( Inverse Function Theorem ) . Assume that M C Rk and N C R 

are smooth n - manifolds and f : M ^ N is a smooth map . Let p0 E M and 
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suppose that the differential df ( p0 ) : Tp0M ^ Tf ( P0 ) N is a vector 

space isomorphism . Then there is an M - open neighborhood U C M of 

p0 such that V := f ( U ) C N is an N - open subset of N and the restric - 

tion f | u : U ^ V is a diffeomorphism .  

Proof . Choose coordinate charts <fi0 : U0 ^ U0 , defined on an M - open 

neighborhood U0 C M of p0 onto an open set U0 C Rn , and ^0 : V0 ^ 

Vfj^defined on an N - open neighborhood V0 C N of q0 := f ( p0 ) onto 

an open set V0 C Rn . Shrinking U0 , if necessary , we may assume that f 

( U0 ) C V0 . Then the map 

f := ^0 o f o 0 - 1 : U0 ^ V0 

is smooth and its differential df ( x0 ) : Rn ^ Rn is bijective at x0 := 00 ( 

p0 ) . Hence the Invers^ Function Theorem asserts that there exists an 

open neighborhood U C IJp ofx0 such that f := f ( U ) is an open subset 

of VU0 and the restriction of fU to UU is a diffeomorphism from UU to 

U . Hence the assertion holds with U := ^ - 1 ( f / ) and V := ^ - 1 ( U ) . 

This proves Theorem □ 

Definition ( Regular value ) . Let M C Rk be a smooth m - manifold , let 

N C R^ be a smooth n - manifold , and let f : M ^ N be a smooth map . 

An element q E N is called a regular value of f if , for every p E M with f 

( p ) = q , the differential df ( p ) : TpM ^ Tf ( p ) N is surjective .  

Theorem ( Regular Values ) . Let f : M ^ N be as in Definition and let q e 

N be a regular value of f . Then the set 

P := f - 1 ( q ) = {p e M | f ( p ) = q} 

is a smooth submanifold of Rk of dimension m — n and , for each point 

p e P , its tangent space at p is given by 

TpP = ker df ( p ) = {v e TVM | df ( p ) v = 0} .  

Proof . Let p0 e P and choose a coordinate chart : U0 ^ fo ( Uo ) C Rm 

on an M - open neighborhood U0 C M of p0 . Likewise , choose a coordi 

- nate chart : V0 ^ ^o ( Vo ) C Rn on an N - open neighborhood V0 C N 

of q . Shrinking U0 , if necessary , we may assume that f ( U0 ) C V0 . 

Then the point c0 := ^0 ( q ) is a regular value of the map 
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f0 := ^0 o f o 0 - 1 : ^ ( Ud ) ^ Rn .  

Namely , if x e <f0 ( U0 ) satisfies f0 ( x ) = c0 , then p := 0 - 1 ( x ) e U0 

n P , so the maps df - 1 ( x ) : Rm ^ TPM , df ( p ) : TPM ^ TqN , and d^ 

( q ) : TqN ^ Rn are all surjective , hence so is their composition , and by 

the chain rule this composition is the derivative df0 ( x ) : Rm ^ Rn . 

With this understood , it follows from Theorem that the set 

f0_1 ( c0 ) = {x e MU ) | f ( 0 - 1 ( x ) ) = q} = ^ ( U n P )  

is a manifold of of dimension m — n contained in the open set f0 ( U0 ) 

C Rm . Using Definition and shrinking U0 further , if necessary , we may 

as - sume that the set f0 ( U0 n P ) is diffeomorphic to an open subset of 

Rm - n . Compsing this diffeomorphism with <f0 we find that U0 C P is 

diffeomorphic to the same open subset of Rm - n . Since the set U0 C M 

is M - open , there exists an open set U C Rk such that U n M = U0 , 

hence U n P = U0 n P , and so U0 n P is a P - open neighborhood of p0 . 

Thus we have proved that every element p0 e P has a P - open 

neigborhood that is diffeomorphic to an open subset of Rm - n . Thus P C 

Rk is a manifold of dimension m — n  

Now let p e P and v e TpP . Then there exists a smooth curve 7 : R ^ P 

such that 7 ( 0 ) = p and 7 ( 0 ) = v . Since f ( 7 ( f ) ) = 0 for all t , we 

have 

df ( p ) v = df 

f ( Y ( t ) ) = 0 

t=0 

and so v e ker df ( p ) . Hence TpP C ker df ( p ) and equality holds 

because both TpP and ker df ( p ) are ( m — n ) - dimensional linear 

subspaces of Rk . This proves Theorem .  

Submanifolds and Embeddings 

This section deals with subsets of a manifold M that are themselves mani 

- folds as in Definition . Such subsets are called submanifolds of M .  
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Definition ( Submanifold ) . Let M C Rk be an m - dimensional man - 

ifold . A subset L C M is called a submanifold of M of dimension I , if L 

itself is an <= - manifold .  

Definition ( Embedding ) . Let M C Rk be an m - dimensional mani - 

fold and N C R be an n - dimensional manifold . A smooth map f : N ^ M 

is called an immersion if its differential df ( q ) : TqN ^ Tf ( q ) M is 

infective for every q e N . It is called proper if , for every compact subset 

K C f ( N ) , the preimage f - 1 ( K ) = {q e N | f ( q ) e K} is compact . 

The map f is called an embedding if it is a proper infective immersion .  

Remark In our definition of proper maps it is important that the compact 

set K is required to be contained in the image of f . The literature also 

contains a stronger definition of proper which requires that f - 1 ( K ) is a 

compact subset of M for every compact subset K C N , whether or not K 

is contained in the image of f . This holds if and only if the map f is 

proper in the sense of Definition and has an M - closed image .  

 

Figure : A coordinate chart adapted to a submanifold .  

 

Theorem ( Submanifolds ) . Let M C Rk be an m - dimensional man - 

ifold and N C R^ be an n - dimensional manifold .  

If f : N ^ M is an embedding then f ( N ) is a submanifold of M .  

If P C M is a submanifold then the inclusion P ^ M is an embedding .  

A subset P C M is a submanifold of dimension n if and only if , for every 

p0 e P , there exists a coordinate chart f : U ^ Rm on an M - open 

neighborhood U of p0 such that f ( U n P ) = f ( U ) n ( Rn x {0} ) .  

A subset P C M is a submanifold of dimension n if and only if , for ev - 

ery p0 e P , there exists an M - open neighborhood U C M of p0 and a 

smooth map g : U ^ Rm - n such that 0 is a regular value of g and U n P 

= g - 1 ( 0 ) .  



Notes 

52 
 

Lemma ( Embeddings ) . Let M and N be as in Theorem let f : N ^ M be 

an embedding , let q0 <= N , and define 

P := f ( N ) , po := f ( qo ) <= P .  

Then there exists an M - open neighborhood U C M of p0 , an N - open 

neighborhood V C N of q0 , an open neighborhood W C Rm - n of the 

origin , and a diffeomorphism F : V x W ^ U such that , for all q <= V 

and all z <= W ,  

F ( q , 0 ) = f ( q ) ,  

F ( q , z ) <= P z = 0 .   

Proof . Choose any coordinate chart fa : U0 ^ Rm on an M - open 

neighbor - hood Uo C M of p0 . Then d ( fo ◦ f ) ( q0 ) = #0 ( f ( q0 ) ) ◦ 

df ( q0 ) : TqoN ^ Rm is injective . Hence there is a linear map B : Rm - 

n ^ Rm such that the map 

Tq0N x Rm - n ^ Rm : ( w , ( ) ^ d ( fa ◦ f ) ( q0 ) w + B 

is a vector space isomorphism . Define the set 

Q := { ( q , z ) <= N x Rm - n | f ( q ) <= U0 , fa ( f ( q ) ) + Bz <= fa ( U0 

) } .  

This is an open subset of N x Rm - n and we define F : Q ^ M by 

F ( q , z ) := 0 - 1 ( 00 ( f ( q ) ) + Bz ) .  

This map is smooth , it satisfies F ( q , 0 ) = f ( q )  - 1 ( U0 ) , 

and the derivative dF ( q0 , 0 ) : Tq0 N x Rm - n ^ Tp0M is the 

composition of the map with dfa ( p0 ) - 1 : Rm ^ Tp0M and so is a 

vector space isomor - phism . Thus the Inverse Function Theorem asserts 

that there is an N - open neighborhood V0 C N of q0 and an open 

neighborhood W0 C Rm - n of the origin such that V0 x W0 C Q , the set 

U0 := F ( V0 x W0 ) is M - open , and the restriction of F to V0 x W0 is a 

diffeomorphism onto U0 . Thus we have constructed a diffeomorphism F 

: V0 x W0 ^ U0  

We claim that the restriction of F to the product V x W of sufficiently 

small open neighborhoods V C N of q0 and W C Rm - n of the origin 
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also satisfies . Otherwise , there exist sequences qi <= V0 converging to 

q0 and zi <= W0 \ {0} converging to zero such that F ( qi , zi ) <= P . 

Hence there exists a sequence qi <= N such that F ( qi , zi ) = f ( qi ) . 

This sequence converges to f ( q0 ) . Since f is proper we may assume , 

passing to a suitable subsequence if necessary , that qii converges to a 

point q0i <= N . Then 

f ( q0 ) = lim f ( qi ) = lim F ( qi , zi ) = f ( q0 ) .  

i^^ i^^ 

Since f is injective , this implies q'0 = q0 . Hence ( qi , 0 ) e V0 x W0 for 

i sufficiently large and F ( qi , 0 ) = f ( qi ) = F ( qi , Zi ) . This 

contradicts the fact that the map F : Vo x Wo ^ M is injective 

Proof of Theorem We prove ( i ) . Let q0 e N , denote p0 := f ( q0 ) e P , 

and choose a diffeomorphism F : V x W ^ U as in Lemma . Then set V C 

N is diffeomorphic to an open subset of Rn ( after schrinking V if 

necessry ) , the set U n P is P - open because U C M is M - open , and we 

have U n P = {F ( q , 0 ) | q e V} = f ( V ) Hence the map f : V ^ U n P is   

a diffeomorphism whose inverse is the composition of the smooth maps 

F - 1 : U n P ^ V x W and V x W ^ V : ( q , z ) ^ q . Hence a P - open 

neighborhood of p0 is diffeomorphic to an open subset of Rn . Since p0 e 

P was chosen arbitrary , this shows that P is an n - dimensional 

submanifold of M .  

We prove ( ii ) . The inclusion i : P ^ M is obviously smooth and in - 

jective ( it extends to the identity map on Rk ) . Moreover , TpP C TpM 

for every p e P and the differential di ( p ) : TpP ^ TpM is the obvious 

inclusion for every p e P . That i is proper follows immediately from the 

definition . Hence i is an embedding .  

We prove ( iii ) . If a coordinate chart f0 as in ( iii ) exists then the set U0 

n P is P - open and is diffeomorphic to an open subset of Rn . Since the 

point p0 e P was chosen arbitrary this proves that P is an n - dimensional 

submanifold of M . Conversely , suppose that P is an n - dimensional sub 

- manifold of M and let p0 e P . Choose any coordinate chart f0 : U0 ^ 

Rm of M defined on an M - open neighborhood U0 C M of p0 . Then f0 ( 

U0 n P ) is an n - dimensional submanifold of Rm . Hence Theorem 
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asserts that there are open sets V , W C Rm with p0 e V C f0 ( U0 ) and a 

diffeo - morphism ^ : V ^ W such that fo ( po ) e V , ^ ( V n fo ( Uo n P ) 

) = W n ( Rn x {0} ) .  

Now define U := f - ^V ) C U0 . Then p0 e U , the chart f0 restricts to a 

diffeomorphism from U to V , the composition f := ^ o ^0|u : U ^ W is a 

diffeomorphism , and f ( U n P ) = ^ ( V n f0 ( U0 n P ) ) = W n ( Rn x 

{0} ) .  

We prove ( iv ) . That the condition is sufficient follows directly from 

Theorem . To prove that it is necessary , assume that P C M , is a 

submanifold of dimension n , fix an element po e P , and choose a coordi 

- nate chart f : U ^ Rm on an M - open neighborhood U C M of p0 as in 

part ( iii ) . Define the map g : U ^ Rm - n by g ( p ) := ( fn + 1 ( p ) , . . . , 

fm ( p ) ) for p e U . Then 0 is a regular value of g and g - 1 ( 0 ) = U n P 

. This proves Theorem□ 

Example . Let S1 C R2 = C be the unit circle and consider the map f : S1 

^ R2 given by f ( x , y ) := ( x , xy ) . This map is a proper immersion but 

is not injective ( the points ( 0 , 1 ) and ( 0 , - 1 ) have the same image 

under f ) . The image f ( S1 ) is a figure 8 in R2 and is not a submanifold 

.  

 

Figure : A proper immersion .  

 

Example . Consider the restriction of the map f in to the submanifold   N 

:= S1 \ { ( 0 , - 1 ) } . The resulting map f : N ^ R2 is an injective 

immersion  but it is not proper . It has the same image as before and 

hence f ( N )   is not a manifold .  

Example . The map f : R ^ R2 given by f ( t ) := ( t2 , t3 ) is proper and 

injective , but is not an embedding ( its differential at x = t is not 

injective ) . The image of f is the set f ( R ) = C := { ( x , y ) e R2 | x3 = 

y2} and is not a submanifold 



Notes 

55 
 

 

Figure: A proper injection .  

Example . Define the map f : R ^ R2 by f ( t ) := ( cos ( t ) , sin ( t ) ) . 

This map is an immersion , but it is neither injective nor proper . 

However , its image is the unit circle in R2 and hence is a submanifold of 

R2 . The map R ^ R2 : t ^ f ( t3 ) is not an immersion and is neither 

injective nor proper , but its image is still the unit circle .  

 

Check your Progress -  1 

Discuss Differential Geometry  

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Differential Topology 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

 

2.5 LET US SUM UP 

In this unit we have discussed the definition and example of Differential 

Geometry And Differential Topology , Tangent Spaces And Derivatives , 

The Inverse Function Theorem 
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2.6 KEYWORDS 

 

Differential Geometry And Differential Topology ….. This chapter 

introduces various fundamental concepts that are central to the fields of 

differential geometry and differential topology 

Tangent Spaces And Derivatives ….. The main reason for first 

discussing the extrinsic notion of embedded manifolds in Euclidean 

space 

The Inverse Function Theorem….. Corollary is analogous to the 

corresponding assertion for smooth maps between open subsets of 

Euclidean space . Likewise , the inverse function theorem for manifolds 

is a partial converse of Corollary  

2.7 QUESTIONS FOR REVIEW 

Explain Differential Geometry  

Explain Differential Topology 

2.8 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Differential Geometry   ( answer for Check your Progress- 1 Q )  

Differential Topology  ( answer for Check your Progress -1 Q )  

2.9 REFERENCE 

 

Differential Geometry, Differential Geometry & Application, 

Introduction to Defferential Geometry, Basic of Differential Geometry. 
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UNIT-III: VECTOR FIELDS AND 

FLOWS … VECTOR FIELDS 

STRUCTURE 

3.0 Objectives 

3.1 Introduction 

3.2 Vector Fields and Flows… Vector Fields  

3.3 Lie Groups 

3.4 Lie Group Homeomorphisms 

3.5 Let Us Sum Up 

3.6 Keywords 

3.7 Questions For Review 

3.8 Answers To Check Your Progress 

3.9 References 

3.0 OBJECTIVES 

 

After studying this unit , you should be able to:   

 Understand about Vector Fields and Flows… Vector Fields 

 Lie Groups 

 Lie Group Homeomorphisms 

 

3.1 INTRODUCTION 

 

Differential geometry arose and developed as a result of and in 

connection to the mathematical analysis of curves and surfaces 

Mathematical analysis of curves and surfaces had been developed to 

answer some of unanswered questions that appeared in calculus like the 
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reasons for relationships between complex shapes and curves , series and 

analytic functions Vector Fields and Flows… Vector Fields , Lie Groups 

, Lie Group Homeomorphisms 

 

3.2 VECTOR FIELDS AND FLOWS 

VECTOR FIELDS 

 

Definition ( Vector Field ) . Let M C Rk be a smooth m - manifold . A ( 

smooth ) vector field on M is a smooth map X : M ^ Rk such that 

X ( p ) e TpM 

for every p e M . The set of smooth vector fields on M will be denoted by 

Vect ( M ) := {X : M ^ Rk | X is smooth , X ( p ) e TpM for all p e m} .  

Exercise Prove that the set of smooth vector fields on M is a real vector 

space .  

Example . Denote the standard cross product on R3 by 

 / X2V3 - X3V2 \ x x y := I X3P1 - Xiy3 I \ xiy2 - X2yi J 

For x , y e R3 . Fix a vector <= e S2 and define the maps X , Y : S2 ^ R3 

by 

X ( p ) := <= x p , Y ( p ) := ( <= x p ) x p .  

The  . Their integral curves  

Example . Let M := R2 . A vector field on M is then any smooth map X : 

R2 ^ R2 . As an example consider the vector field 

X ( x , y ) := ( x , - y ) .  

This vector field has a single zero at the origin and its integral curves 

Definition ( Integral curves ) . Let M C Rk be a smooth m - manifold , let 

X <= Vect ( M ) be a smooth vector field on M , and let I C R be an open 
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interval . A smooth map 7 : I ^ M is called an integral curve of X if it 

satisfies the equation 

Y ( t ) = X ( y ( t ) )  

for every t <= I .  

Theorem . Let M C Rk be a smooth m - manifold and X <= Vect ( M ) be 

a smooth vector field on M . Fix a point p0 <= M . Then the following 

holds .  

 ( i ) There is an open interval I C R containing 0 and a smooth curve Y : 

I ^ M satisfying the equation 

At ( t ) = X ( Y ( t ) ) Y ( 0 ) = Po 

for every t <= I .  

 ( ii ) If Yi : I1 ^ M and Y2 : I2 ^ M are two solutions of on open 

intervals I1 and I2 containing 0 , then y 1 ( t ) = Y2 ( t ) for every t <= I1 

n I2 .  

Proof . We prove ( i ) . Let f0 : U0 — Rm be a coordinate chart on M , 

defined on an M - open neighborhood U0 C M of p0 . The image of f0 is 

an open set 

Q := fo ( Uo ) C Rm 

and we denote the inverse map by - f0 : rem the differential d^0 ( x ) : 

Rm — tangent space Tp0 ( x ) M for every x e Q .  

f ( x ) := d^0 ( x ) 1X ( 0o ( x ) ) , x G Q .  

This map is smooth and hence , by the basic existence and uniqueness 

the - orem for ordinary differential equations in Rm the equation 

x ( t ) = f ( x ( t ) ) , x ( 0 ) = xo := fo ( po ) ,   

has a solution x : I — Q on some open interval I C R containing 0 . 

Hence the function 

Y := - f0 o x : I ^ U0 C M 

is a smooth solution of . This proves ( i ) .  
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The local uniqueness theorem asserts that two solutions Yi : Ii ^ M for i 

= 1 , 2 agree on the interval ( - <= , e ) C I1 n I2 for e > 0 sufficiently 

small . This follows immediately from the standard uniqueness theorem 

for the solutions and the fact that x : I ^ Q is a solution of if and only if y 

:= ◦ x : I ^ U0 is a solution . To prove ( ii ) we observe that the set 

I := Ii n I2 

is an open interval containing zero and hence is connected . Now 

consider the set 

A := {t e 11 Yi ( t ) = Y2 ( t ) } .  

This set is nonempty , because 0 G A . It is closed , relative to I , because 

the maps Y1 : I ^ M and y2 : I ^ M are continuous . Namely , if ti G I is a 

sequence converging to t e I then Y1 ( ti ) = Y2 ( ti ) for every i and , 

taking the limit i —y to , we obtain Y1 ( t ) = Y2 ( t ) and hence t e A . 

The set A is also open by the local uniqueness theorem . Since I is 

connected it follows that A = I .  □The Flow of a Vector Field 

 

Definition ( The flow of a vector field ) . Let M C Rk be a smooth m - 

manifold and X e Vect ( M ) be a smooth vector field on M . For p0 e M 

the maximal existence interval of p0 is the open interval 

I C R is an open interval containing 0 and there is a solution x : I ^ M  

: I ( p0 ) ^ M . The flow of X is the map $ : D ^ M defined by 

D := { ( t , po ) | P0 e M , t e I ( Po ) } 

and $ ( t , p0 ) := 7 ( t ) , where 7 : I ( p0 ) ^ M is the unique solution .  

Theorem . Let M C Rk be a smooth m - manifold and X e Vect ( M ) be a 

smooth vector field on M . Let $ : D ^ M be the flow of X . Then the 

following holds .  

D is an open subset of R x M .  

The map $ : D ^ M is smooth .  

Let p0 e M and s e I ( p0 ) . Then 
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I ( $ ( s , p0 ) ) = I ( p0 ) - s  

and , for every t e R with s + 1 e I ( p0 ) , we have 

$ ( s + t , p0 ) = $ ( t , $ ( s , p0 ) ) .   

Lemma . Let M , X , D , $ be as in Theorem and let K C M be a compact 

set . Then there exists an M - open set U C M and an e > 0 such that K C 

U , ( —e , e ) x U CD , and $ is smooth on ( —e , e ) x U .  

Proof . In the case where M = Q is an open subset for every p e M ,    

there exists an M - open neighborhood Up C M of p and an ep > 0    such 

that ( —ep , ep ) xUp CD and the restriction of $ to ( —ep , ep ) x Up is 

smooth .  

Using this observation for every p e K  

 ( and the axiom of choice ) we obtain an M - open cover K C ( JpeK Up 

. Since the set K is compact there exists a finite subcover K C Upi U ■ ■ 

■ U UpN =: U . Now define e := min{epi , . . . , epN } to deduce that ( —

e , e ) x U CD and $ is smooth on ( —e , e ) x U .  

Proof of Theorem . We prove ( iii ) . The map 7 : I ( p0 ) — s ^ M 

defined by Y ( t ) := f ( s + t , p0 ) is a solution of the initial value 

problem 7 ( t ) = X ( 7 ( t ) ) with 7 ( 0 ) = f ( s , p0 ) . Hence I ( p0 ) — s 

C I ( f ( s , p0 ) ) and equation holds for every t <= R with s + t <= I ( p0 ) 

. In particular , with t = —s , we have p0 = f ( —s , f ( s , p0 ) ) . Thus we 

obtain equality in equation by the same argument with the pair ( s . p0 ) 

replaced by ( —s , f ( s , p0 ) ) .  

We prove ( i ) and ( ii ) . Let ( t0 , p0 ) <= D so that p0 <= M and t0 <= I 

( p0 ) . Suppose t0 > 0 . Then K := {f ( t , p0 ) | 0 < t < t0} is a compact 

subset of M . ( It is the image of the compact interval [0 , t0] under the 

unique solution 7 : I ( p0 ) ^ M . ) Hence , by Lemma , there is an M - 

open set U C M and an e > 0 such that 

K C U , ( —e , e ) x U CD ,  

and f is smooth on ( —e , e ) x U . Choose N so large that t0 / N < e . 

Define U0 := U and , for k = 1 , . . . , N , define the sets Uk C M 

inductively byUfc := {p <= U | f ( t0 / N , p ) <= Ufc - i} .  
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These sets are open in the relative topology of M .  

We prove by induction on k that ( —e , kt0 / N + e ) x Uk CD and f is 

smooth on ( —e , kt0 / N + e ) x Uk . For k = 0 this holds by definition of 

e and U . If k <= {1 , . . . , N} and the assertion holds for k — 1 then we 

have 

p <= Ufc p <= U , f ( t0 / N , p ) <= Ufc - i 

 ( —e , e ) C I ( p ) , ( —e , ( k — 1 ) t0 / N + e ) C I ( f ( t0 / N , p ) ) ( —

e , kt0 / N + e ) C I ( p ) .  

Here the last implication follows Moreover , for p <= Ufc and t0 / N — e 

< t < kt0 / N + e , we have , by ( 2 . 4 . 4 ) , that 

f ( t , p ) = f ( t — t0 / N , f ( t0 / N , p ) )  

Since f ( t0 / N , p ) <= Uk - 1 for p <= Uk the right hand side is a smooth 

map on the open set ( t0 / N — e , kt0 / N + e ) x Uk . Since Uk C U , f is 

also a smooth map on ( —e , e ) x Uk and hence on ( —e , kt0 / N + e ) x 

Uk . This completes the induction . With k = N we have found an open 

neighborhood of ( t0 , p0 ) contained in D , namely the set ( —e , t0 + e ) 

x UN , on which f is smooth . The case t0 < 0 is treated similarly . This 

proves ( i ) and ( ii )  

Definition . A vector field X <= Vect ( M ) is called complete if , for 

each p0 <= M , there is an integral curve 7 : R ^ M of X with 7 ( 0 ) = p0 

.  

Lemma Let M c Rk is a compact manifold . Then every vector field on 

M is complete .  

Proof . Let X e Vect ( M ) . It follows from Lemma with K = M that 

there exists an e > 0 such that ( - <= , e ) c I ( p ) for all p e M .  

By Theorem this implies I ( p ) = R for all p e M . Hence X is complete . 

□ 

Let M c Rk be a smooth manifold and X e Vect ( M ) . Then 

X is complete I ( p ) = R V p e M D = R x M .  
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Assume X is complete , let 0 : R x M ^ M be the flow of X , and define 

the map 0t : M ^ M by 4>t ( p ) := 0 ( t , p ) for t e R and p e M . Then 

Theorem 2 . 4 . 9 asserts that 0t is smooth for every t e R and that 

0s + t = 0s o 0t , 00 = id  

for all s , t e R . In particular this implies that 0t o 0 - t = 0 - t o 0t = id . 

Hence 0t is bijective and ( 0t ) - 1 = 0 - t , so each 0t is a diffeomorphism 

.  

Exercise . Let M c Rk be a smooth manifold . A vector field X on M is 

said to have compact support if there exists a compact subset K c M such 

that X ( p ) = 0 for every p e M \ K . Prove that every vector field with 

compact support is complete .  

We close this subsection with an important observation about incomplete 

vector fields . The lemma asserts that an integral curve on a finite 

existence interval must leave every compact subset of M .  

Lemma . Let M c Rk be a smooth m - manifold , let X e Vect ( M ) , let 0 

: D ^ M be the flow of X , let K c M be a compact set , and let p0 e M be 

an element such that 

I ( p0 ) n [0 , to ) = [0 , b ) , 0 < b < to .  

Then there exists a number 0 < tK < b such that 

tK <t<b =^ 0 ( t , po ) e M \ K 

Proof . By Lemma there exists an e > 0 such that ( - e , e ) c I ( p ) for 

every p e K . Choose e so small that e < b and define 

tK := b — e > 0 .  

Choose a real number tK < t < b . Then I ( 0 ( t , po ) ) = [0 , b — t ) by 

equation in part ( ii ) of Theorem Since 0 <b — t < b — tk = e , this 

shows that ( —e , e ) c I ( 0 ( t , po ) ) and hence 0 ( t , po ) e K .  

Corollary Let M c Rk be a smooth m - manifold , let X e Vect ( M ) , and 

let 7 : ( 0 , T ) ^ M be an integral curve of X . If there exists a compact 

set K c M that contains the image of 7 , then 7 extends to an integral 

curve of X on the interval ( - p , T + p ) for some p> 0 .  
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Proof . Here is another more direct proof that does not rely on Lemma  

Since K is compact , there exists a constant c > 0 such that |X ( p ) | < c 

for all p e K . Since 7 ( t ) e K for 0 <t <T , this implies 

< |7 ( r ) | dr = |X ( q ( r ) ) | dr < c ( t — s )  

for 0 < s < t < T . Thus the limit p0 := limt^0 Y ( t ) exists in Rk and , 

since K is a closed subset of Rk , we have p0 e K c M . Define y0 : [0 , T 

) ^ M by 

p0 , for t = 0 ,  

Y ( t ) , for 0 < t < T .  

We prove that yo is differentiable at t = 0 and Y0 ( 0 ) = X ( p0 ) . To see 

this , fix a constant e > 0 . Since the curve [0 , T ) ^ Rk : t ^ X ( y ( t ) ) is 

continuous , there exists a constant 5 > 0 such that 

|X ( Y ( t ) ) — X ( Po ) | < e .  

0 < t < 5 =^ Hence , for 0 < s < t < 5 , we have 

|Y ( t ) — Y ( s ) — ( t — s ) X ( Po ) | = 

 ( 7 ( r ) — X ( po ) ) dr 

 ( X ( y ( r ) ) — X ( po ) ) dr 

s 

f |X ( Y ( r ) ) — X ( po ) | dr J s 

 ( t — s ) e .  

Take the limit s —> 0 to obtain 

lim |Y ( t ) — Y ( s ) — ( t — s ) X ( Po ) | < e s^0 t — s _ 

for 0 < t < 5 . Thus y0 is differentiable at t = 0 with Y0 ( 0 ) = X ( p0 ) , 

as claimed . Hence y extends to an integral curve 7 : ( —p , T ) ^ M of X 

for some p > 0 via 7 ( t ) := 0 ( t , p0 ) for —p < t < 0 and 7 ( t ) := Y ( t ) 

for 0 < t < T . Here 7 is the flow of X . That y also extends beyond t = T , 

follows by replacing Y ( t ) with y ( T—t ) and X with —X .  
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The Group of Diffeomorphisms 

 

Let us denote the space of diffeomorphisms of M by 

Diff ( M ) := ( 0 : M ^ M | 0 is a diffeomorphism} .  

This is a group . The group operation is composition and the neutral 

element is the identity . Now equation asserts that the flow of a complete 

vector field X e Vect ( M ) is a group homomorphism 

R ^ Diff ( M ) : t ^ 00 

This homomorphism is smooth and is characterized by the equation 

d 

j / ( p ) = X ( 0t ( p ) ) , 0o ( p ) = p 

for all p e M and t e R . We will often abbreviate this equation in the 

form 

d 

— 0t = X o 0t , 00 = id . dt 

Exercise ( Isotopy ) . Let M C Rk be a compact manifold and I C R be an 

open interval containing 0 . Let 

I x M ^ Rk : ( t , p ) ^ Xt ( p )  

be a smooth map such that Xt e Vect ( M ) for every t . Prove that there is 

a smooth family of diffeomorphisms I x M ^ M : ( t , p ) ^ 0t ( p ) 

satisfying  for every t e I . Such a family of diffeomorphisms 

I ^ Diff ( M ) : t ^ 0t 

is called an isotopy of M . Conversely prove that every smooth isotopy I 

^ Diff ( M ) : t ^ 0t is generated ( uniquely ) by a smooth family of vector 

fields I ^ Vect ( M ) : t ^ Xt . 2 . 4 . 3 The Lie Bracket 
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Let M c Rk and N C R be smooth m - manifolds and X G Vect ( M ) be 

smooth vector field on M . If 4 : N ^ M is a diffeomorphism , the 

pullback of X under 4 is the vector field on N defined by 

 ( 4*X ) ( q ) := # ( q ) - 1X ( 4 ( q ) )   

for q G N . If 0 : M ^ N is a diffeomorphism then the pushforward of X 

under 4 is the vector field on N defined by 

 ( 0*X ) ( q ) := d0 ( 0 - 1 ( q ) ) X ( 0 - 1 ( q ) )   ( 2 . T9 )  

for q G N .  

Lemma . Let M c Rk , N c R , and P C Rn be smooth m - dimen - sional 

submanifolds and let X G Vect ( M ) and Z G Vect ( P ) . Then 

0*X = ( 0 - 1 ) *X  

and 

 ( 4 o 0 ) *X = 4*0*X , ( 4 o 0 ) *Z = 0*4 ) *Z .   

Proof . Equation follows from the fact that 

d0 - 1 ( q ) = d0 ( 0 - 1 ( q ) ) - 1 : TqN ^ T^ - i{q ) M 

for all q G N 

We think of a vector field on M as a smooth map 

X : M ^ Rkthat satisfies the condition X ( p ) G TpM for every p G M . 

Ignoring this condition temporarily , we can differentiate X as a map 

from M to Rk and its differential at p is then a linear map 

dX ( p ) : TpM ^ Rk .  

In general , this differential will no longer take values in the tangent 

space TpM . However , if we have two vector fields X and Y on M the 

next lemma shows that the difference of the derivative of X in the 

direction Y and of Y in the direction X does take values in the tangent 

spaces of M .  
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Definition ( Lie Bracket ) . Let M C Rk be a smooth manifold and let X , 

Y <= Vect ( M ) be smooth vector fields on M . The Lie bracket of X and 

Y is the vector field [X , Y] <= Vect ( M ) defined by 

[X , Y] ( p ) := dX ( p ) Y ( p ) - dY ( p ) X ( p ) .  

Lemma . Let M C Rk and N C R be smooth manifolds , let X , Y , Z be 

smooth vector fields on M , and let 

f : N ^ M 

be a diffeomorphism . Then 

f * [X , Y] = [f*X , f*Y] , [X , Y] + [Y , X] =0 ,  

[X , [Y , Z]] + [Y , [Z , X]] + [Z , [X , Y]] = 0 .  

The last equation is called the Jacobi identity 

Proof . Let R ^ Diff ( M ) : t ^ f' be the flow of Y . Then the map 

R ^ Diff ( N ) : t ^ f 1 o o f 

is the flow of the vector field f*Y on N .  

Definition . A Lie algebra is a real vector space g equipped with a skew - 

symmetric bilinear map g x g ^ g : ( C , rj ) ^ [C , n] that satisfies the 

Jacobi identity [C , [n , Z]] + [n , [Z , C]] + [Z , [C , n]] = 0 for all C , n , 

Z G g -  

Example . The Vector fields on a smooth manifold M C Rk form a Lie 

algebra with the Lie bracket . The space gl ( n , R ) = Rnxn of real n x n - 

matrices is a Lie algebra with the Lie bracket 

[C n] := Cn - nC .  

It is also interesting to consider subspaces of gl ( n , R ) that are invariant 

under this Lie bracket . An example is the space 

T 

o ( n ) := {C G gl ( n , R ) | CT + C = 0} 
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of skew - symmetric n x n - matrices . It is a nontrivial fact that every 

finite - dimensional Lie algebra is isomorphic to a Lie subalgebra of gl ( 

n , R ) for some n . For example , the cross product defines a Lie algebra 

STRUCTURE on R3 and the resulting Lie algebra is isomorphic to o ( 3 

) .  

Remark . There is a linear map Rmxm ^ Vect ( Rm ) : C ^ Xg which 

assigns to a matrix C G gl ( m , R ) the linear vector field Xg : Rm ^ Rm 

given by Xg ( x ) := Cx for x G Rm . This map preserves the Lie bracket 

, i . e . [Xg , Xn] = X[g , n] , and hence is a Lie algebra homomorphism .  

Example . The configuration space for driving a car in the plane is the 

manifold M := C x S1 , where S1 C C denotes the unit circle . Thus a 

point in M is a pair p = ( z , A ) e C x C with | A| = 1 . The point z e C 

represents the position of the car and the unit vector A e S1 represents 

the direction in which it is pointing . The left turn is represented by a 

vector field X and the right turn by a vector field Y on M . These vector 

field are given by 

X ( z , A ) := ( A , iA ) , Y ( z , A ) := ( A , - iA ) .  

Their Lie bracket is the vector field 

[X , Y] ( z , A ) = ( —2iA , 0 ) .  

This vector field represents a sideways move of the car to the right . And 

a sideways move by 2e2 can be achieved by following a backward right 

turn for time e , then a backward left turn for time e , then a forward right 

turn for time e , and finally a forward left turn for time e .  

This example can be reformulated by identifying C with R2 via z = x + 

iy and representing a point in the unit circle by the angle 9 e R / 2nZ via 

A = eld . In this formulation the manifold is M = R2 x R / 2nZ , a point in 

M is represented by a triple ( x , y , 9 ) e R3 , the vector fields X and Y 

are 

X ( x , y , 9 ) := ( cos ( 9 ) , sin ( 9 ) , 1 ) , Y ( x , y , 9 ) := ( cos ( 9 ) , sin 

( 9 ) , —1 ) ,  
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and their Lie bracket is [X , Y] ( x , y , 9 ) = 2 ( sin ( 9 ) , — cos ( 9 ) , 0 ) 

.  

Lemma . Let X , Y e Vect ( M ) be complete vector fields on a man - 

ifold M and 00 04 e Diff ( M ) be the flows of X and Y , respectively . 

Then the Lie bracket [X , Y] vanishes if and only if the flows of X and Y 

commute , i . e . 0s o 0t = 0t o 0s for all s , t e R .  

Proof . If the flows of X and Y commute then the Lie bracket [X , Y] 

vanishes by Lemma . Conversely , suppose that [X , Y] = 0 . Then we 

have 

d d 

Ts ( 0s ) , Y = ( 0s ) , -  ( 0r ) , Y = ( 0s ) , [X , Y] = 0 for every s e R and 

hence 

 ( 0s ) , Y = Y .   

Fix a real number s and define the curve 7 : R ^ M by y ( t ) := 0s ( 0t ( p 

) ) for t e R . Then 7 ( 0 ) = 0s ( p ) and 

7 ( t ) = d0s ( 0t ( p ) ) Y ( 0t ( p ) ) = ( ( 0s ) , Y ) ( Y ( t ) ) = Y ( Y ( t ) )  

for all t . Here the last equation follows Since 0t is the flow of Y we 

obtain q ( t ) = 0t ( 0s ( p ) ) for all t e R  

 

3.3 LIE GROUPS 

Combining the concept of a group and a manifold , it is interesting to 

consider groups which are also manifolds and have the property that the 

group operation and the inverse define smooth maps . We shall only 

consider groups of matrices .  

Definition and Examples 

Definition ( Lie Group ) . A nonempty subset G C Rnxn is called a Lie 

group if it is a submanifold of Rnxn and a subgroup of GL ( n , R ) , i . e .  

g , h e G =^ gh e G 
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 ( where gh denotes the product of the matrices g and h ) and 

g e G =^ det ( g ) = 0 and g - 1 e G .  

 ( Since G = 0 it follows from these conditions that the identity matrix 1 

is an element of g . )  

Example . The general linear group G = GL ( n , R ) is an open subset of 

Rnxn and hence is a Lie group the special linear group 

SL ( n , R ) = {g e GL ( n , R ) | det ( g ) = 1} 

is a Lie group and , Special orthogonal group 

SO ( n ) := {g e GL ( n , R ) | gTg = 1 , det ( g ) = 1} 

is a Lie group . In fact every orthogonal matrix has determinant ±1 and 

so SO ( n ) is an open subset of O ( n ) ( in the relative topology ) .  

In a similar vein the group GL ( n , C ) := {g e Cnxn | det ( g ) = 0} of 

com - plex matrices with nonzero ( complex ) determinant is an open 

subset of Cnxn and hence is a Lie group . As in the real case , the 

subgroups 

SL ( n , C ) := {g e GL ( n , C ) | det ( g ) = 1} ,  

U ( n ) := {g e GL ( n , C ) | g*g = 1} ,  

SU ( n ) := {g e GL ( n , C ) | g*g = il , det ( g ) = 1} 

are submanifolds of GL ( n , C ) and hence are Lie groups . Here g* := 

gT denotes the conjugate transpose of a complex matrix .  

Exercise . Prove that SL ( n , C ) , U ( n ) , and SU ( n ) are Lie groups . 

Prove that SO ( n ) is connected and that O ( n ) has two connected 

components .  

Exercise . Prove that GL ( n , C ) can be identified with the group 

G := {$ e GL ( 2n , R ) | $Jq = Jq$} , Jo := ^ 0 - J ^ .  

Hint: Use the isomorphism Rn x Rn ^ Cn : ( x , y ) ^ x + iy . Show that a 

matrix $ e R2nx2n commutes with J0 if and only if it has the form 
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$ = ( Y "x ) , X , Y e Rnxn .  

What is the relation between the real determinant of $ and the complex 

determinant of X + iY? 

Exercise . Let J0 be and define 

Sp ( 2n ) := {t e GL ( 2n , R ) | TTJoT = Jo} .  

This is the symplectic linear group . Prove that Sp ( 2n ) is a Lie group .  

Example ( Unit Quaternions ) . The Quaternions form a four - 

dimensional associative unital algebra H , equipped with a basis 1 , i , j , 

k . The elements of H are vectors of the form 

x = x0 + ixi + jx2 + kx3 x0 , xi , x2 , x3 e R .  

The product STRUCTURE is the bilinear map H x H ^ H : ( x , y ) ^ xy , 

determined by the relations 

i2 = j2 = k2 = - 1 , ij = - ji = k , jk = - kj = i , ki = - ik = j .  

This product STRUCTURE is associative but not commutative . The 

quaternions are equipped with an involution H ^ H : x ^ x , which assigns 

to a quaternion x of the form its conjugate x := x0 - ix1 - jx2 - kx3 . This 

involution satisfies the conditions 

x + y = x + y , xy = yx , xx = |x|2 , |xy| = |x| |y| 

for x , y e H , where |x| := y / x2 + x2 + x2 + x2 denotes the Euclidean 

norm of the quaternion . Thus the unit quaternions form a group 

Sp ( 1 ) := {x e H | |x| = 1} 

with the inverse map x ^ x . Note that the group Sp ( 1 ) is diffeomorphic 

to the 3 - sphere S3 C R4 under the isomorphism H = R4 .  

Let G C GL ( n , R ) be a Lie group . Then the maps 

G x G ^ G : ( g , h ) ^ gh , G ^ G : g ^ g - 1 

are smooth ( see [18] ) . Fixing an element h <= G we find that the 

derivative of the map G ^ G : g ^ gh at g <= G is given by the linear map 
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TgG ^ TghG : g ^ gh .   

Here g and h are both matrices in Rnxn and gh denotes the matrix prod - 

uct . In fact , if g <= TgG then , since G is a manifold , there exists a 

smooth curve y : R ^ G with y ( 0 ) = g and y ( 0 ) = g . Since G is a 

group we obtain a smooth curve ft : R ^ G given by ft ( t ) := Y ( t ) h . It 

satisfies ft ( 0 ) = gh and so gh = ft ( 0 ) <= Tghg .  

The linear map is obviously a vector space isomorphism whose inverse is 

given by right multiplication with h - 1 . It is sometimes convenient to 

define the map Rh : G ^ G by 

Rh ( g ) := gh 

for g <= G ( right multiplication by h ) . This is a diffeomorphism and the 

linear map is the derivative of Rh at g , so 

dRh ( g ) g = gh for g <= TgG .  

Similarly , each element g <= G determines a diffeomorphism Lg : G ^ G 

, given by 

Lg ( h ) := gh 

for h <= G ( left multiplication by g ) . Its derivative at h <= G is again 

given by matrix multiplication , i . e . the linear map dLg ( h ) : ThG ^ 

Tghg is given by 

dLg ( h ) h = gh for h <= ThG .   

Since Lg is a diffeomorphism its differential dLg ( h ) : ThG ^ TghG is 

again a vector space isomorphism for every h <= G .  

Exercise . Prove that the map G ^ G: g ^ g - 1 is a diffeomorphism and 

that its derivative at g <= G is the vector space isomorphism 

TgG ^ Tg - 1G : v ^ - g - 1 vg - 1 .  

 

The Lie Algebra of a Lie Group 

Let 
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G C GL ( n , R )  

be a Lie group . Its tangent space at the identity matrix 1 e G is called the 

Lie algebra of G and will be denoted by 

g = Lie ( G ) := Ttg .  

This terminology is justified by the fact that g is in fact a Lie algebra , i . 

e . it is invariant under the standard Lie bracket operation 

[<= , n] := <=n - n<= 

on the space Rnxn of square matrices The proof requires the notion of 

the exponential matrix . For <= e Rnxn and t e R we define 

^ tk ck 

exp ( t<= ) :=^ — .   

k=0 

A standard result in first year analysis asserts that this series converges 

absolutely ( and uniformly on compact t - intervals ) , that the map 

r ^ Rnxn : t ^ exp ( t<= ) is smooth and satisfies the differential equation 

d 

— exp ( t<= ) = <= exp ( t<= ) = exp ( t<= ) <= ,  

and that 

exp ( ( s + 1 ) <= ) = exp ( s<= ) exp ( t<= ) , exp ( 0<= ) = H  

for all s , t e R . This shows that the matrix exp ( t<= ) is invertible for 

each t and that the map R ^ GL ( n , R ) : t ^ exp ( t<= ) is a group 

homomorphism .  

Exercise . Prove the following analogue of For <= , n e g 

exp ( Vt<= ) exp ( Vtn ) exp ( —Vt<= ) exp ( - Vtn ) = [<= , n]  

t=0 

In other words , the infinitesimal Lie group commutator is the matrix 

commutator .  
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Lemma . Let G C GL ( n , R ) be a Lie group and denote by g := Lie ( G ) 

its Lie algebra . Then the following holds .  

If <= <= g then exp ( t<= ) <= G for every t <= R .  

If g <= G and n <= g then gpg 1 <= g .  

If <= , n <= g then [<= , n] = <=n - n<= <= g .  

Proof . We prove ( i ) . For every g <= G we have a vector space isomor - 

phism g = TIG ^ TgG : <= ^ <=g as in Hence each element <= <= g 

determines a vector field Xg <= Vect ( G ) , defined by 

Xg ( g ) := <=g <= TgG , g <= G .   

By Theorem there is an integral curve 7 : ( - <= , <= ) ^ G satisfying 

7 ( t ) = Xg ( Y ( t ) ) = <=7 ( t ) , Y ( 0 ) = H .  

By the curve ( - <= , e ) ^ Rnxn : t ^ exp ( t<= ) satisfies the same initial 

value problem and hence , by uniqueness , we have exp ( t<= ) = 7 ( t ) 

<= G for all t <= R with |t| < <= . Now let t <= R and choose N <= N 

such that |N < <= . Then exp ( N<= ) <= G and hence it follows from that 

 ( t \N exp ( t<= ) =exp Nj<= ) <= G .  

This proves ( i ) .  

We prove ( ii ) . Consider the smooth curve 7 : R ^ Rnxn defined by 

Y ( t ) := g exp ( tn ) g - 1 .  

By ( i ) we have 7 ( t ) <= G for every t <= R . Since 7 ( 0 ) = 1 we have 

gng - 1 = y ( o ) <= g .  

This proves ( ii ) .  

We prove ( iii ) . Define the smooth map n : R ^ Rnxn by 

n ( t ) := exp ( t<= ) n exp ( - t<= ) .  

By ( i ) we have exp ( t<= ) <= G and , by ( ii ) , we have n ( t ) <= g for 

every t <= R . Hence [<= , n] = n ( 0 ) <= g . This proves ( iii ) and 

Lemma □ 
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By Lemma the curve 7 : R ^ G defined by 7 ( t ) := exp ( t<= ) g is the 

integral curve of the vector field Xg in with initial condition 7 ( 0 ) = g . 

Thus Xg is complete for every <= <= g .  

Lemma If f G g and y : R ^ G is a smooth curve satisfying 

Y ( s + t ) = Y ( s ) Y ( t ) Y ( 0 ) = 1 Y ( 0 ) = f , ( 2 - 5 - 9 ) then y ( t ) = 

exp ( tf ) for every t G R .  

Proof . For every t G R we have 

Hence y is the integral curve of the vector field Xg in with y ( 0 ) = 1 . 

This implies y ( t ) = exp ( tf ) for every t G R , as claimed .  □ 

Example . Since the general linear group GL ( n , R ) is an open subset of 

Rnxn its Lie algebra is the space of all real n x n - matrices 

gl ( n , R ) := Lie ( GL ( n , R ) ) = Rnxn .  

The Lie algebra of the special linear group is 

s! ( n , R ) := Lie ( SL ( n , R ) ) = {f G gl ( n , R ) | trace ( f ) = 0} and the 

Lie algebra of the special orthogonal group is 

so ( n ) := Lie ( SO ( n ) ) = jf G gl ( n , R ) | fT + f = 0 j = o ( n )  

Exercise . Prove that the Lie algebras of the general linear group over C , 

the special linear group over C , the unitary group , and the special 

unitary group are given by 

gl ( n , C ) := Lie ( GL ( n , C ) ) = Cnxn ,  

s! ( n , C ) := Lie ( SL ( n , C ) ) = {f G gl ( n , C ) | trace ( f ) = 0} ,  

u ( n ) := Lie ( U ( n ) ) = {f G gl ( n , R ) | f* + f = 0} ,  

su ( n ) := Lie ( SU ( n ) ) = {f G gl ( n , C ) | f* + f = 0 , trace ( f ) = 0} .  

These are vector spaces over the reals . Determine their real dimensions . 

Which of these are also complex vector spaces? 

Exercise . Let G C GL ( n , R ) be a subgroup . Prove that G is a Lie 

group if and only if it is a closed subset of GL ( n , R ) in the relative 

topology .  
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3.4 LIE GROUP HOMOMORPHISMS 

Let G and H be Lie groups and g and h be Lie algebras . A Lie group 

homomorphism from G to H is a smooth map p : G ^ H that is a group 

homomorphism . A Lie group isomorphism is a bijective Lie group 

homomorphism whose inverse is also a Lie group homomorphism . A 

Lie algebra homomorphism from g to h is a linear map that preserves the 

Lie bracket .  

Lemma . Let G and H be Lie groups and denote their Lie algebras by g 

:= Lie ( G ) and h := Lie ( H ) . Let p : G ^ H be a Lie group homomor - 

phism and denote its derivative at 1 e G by 

p := dp ( 1 ) : g ^ h .  

Then p is a Lie algebra homomorphism .  

Proof . The proof has three steps .  

Step 1 . For all f e g and t e R we have p ( exp ( tf ) ) = exp ( tp ( f ) ) .  

Fix an element f e g . Then , by Lemma , we have exp ( tf ) e G for every 

t e R . Thus we can define a map 7 : R ^ H by 7 ( t ) := p ( exp ( tf ) ) . 

Since p is smooth , this is a smooth curve in H and , since p is a group ho 

- momorphism and the exponential map satisfies , our curve 7 satisfies 

the conditions 

Y ( s + t ) = Y ( s ) Y ( t ) Y ( 0 ) = 1 Y ( 0 ) = dp ( 1 ) f = p ( f ) .  

Hence it follows from Lemma 2 . 5 . 10 that y ( t ) = exp ( tp ( { ) ) . This 

proves Step 1 .  

Step 2 . For all g e G and r e g we have p ( grg - 1 ) = p ( g ) p ( rj ) p ( g - 

1 ) .  

Define the smooth curve y : R ^ G by y ( t ) := g exp ( tr ) g - 1 . This 

curve takes values in G by Lemma 2 . 5 . 9 . By Step 1 we have 

p ( Y ( t ) ) = p ( g ) p ( exp ( tr ) ) p ( g ) - 1 = p ( g ) exp ( tp ( r ) ) p ( g ) 

- 1 

for every t . Since y ( 0 ) = 1 and - 7 ( 0 ) = grg - 1 we obtain 
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p ( grg - 1 ) = dp ( Y ( 0 ) ) ^ ( 0 ) d 

p ( Y ( t ) )  

t=0 

p ( g ) exp ( t / ^ ( r ) ) p ( g 

t=0 

= p ( g ) p5 ( r ) p ( g 1 ) .  

This proves Step 2 .  

Step 3 . For all <= , n S g we have 

 / K^nD = [p ( 0 , p> ( n ) ] .  

Define the curve n : R ^ g by 

n ( t ) := exp ( t{ ) n exp ( —1{ )  

for t S R . By Lemma this curve takes values in the Lie algebra of G and 

n ( 0 ) = [C , n] .  

Hence 

p ( exp ( t{ ) n exp ( —1<= ) )  

t=0 

p ( exp ( tC ) ) p ( n ) p ( exp ( - tC ) )  

t=0 

exp MCW / ^ ( n ) exp ( - t / ^ ( C ) )  

t=0 

= [ / ^ ( C ) , / 5 ( n ) ] .  

Here the first equation follows from the fact that p is linear , the second 

equation follows from Step 2 with g = exp ( t{ ) , and the third equation 

follows from Step 1 . This proves Step 3 and Lemma .  □ 
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Example The complex determinant defines a Lie group homomorphism 

det : U ( n ) ^ S1 . The associated Lie algebra homomorphism is 

trace = det : u ( n ) ^ iR = Lie ( S1 ) .  

Example ( Unit Quaternions and SU ( 2 ) ) . The Lie group SU ( 2 ) is 

diffeomorphic to the 3 - sphere . Every matrix in SU ( 2 ) can be written 

as 

g = ( Xo + iXl X2 + iX3 ) , x0 + x1 + = 1 . ( 2 . 5 . 10 ) V —x2 + ix3 x0 - 

iX1 j 0 1 2 3 v y 

Here the Xi are real numbers . They can be interpreted as the coordinates 

of a unit quaternion x = x0 + ix1 + jx2 + kx3 S Sp ( 1 ) . The reader may 

verify that the map Sp ( 1 ) ^ SU ( 2 ) : x ^ g in is a Lie group 

isomorphism .  

Exercise ( The double cover of SO ( 3 ) ) . Identify the imaginary part of 

H with R3 and write a vector <= e R3 = Im ( H ) as a purely imagi - nary 

quaternion <= = i<=? + j<=? + k<=3 . Prove that if <= e Im ( H ) and x e 

Sp ( 1 ) then x<=x e Im ( H ) . Define the map p : Sp ( 1 ) ^ SO ( 3 ) by 

p ( x ) <= := x<=X 

for x e Sp ( 1 ) and <= e Im ( H ) . Prove that the linear map p ( x ) : R3 ^ 

R3 is represented by the 3 x 3 - matrix 

 ( x2 + x? — x^ — x| 2 ( x?x2 — x0x3 ) 2 ( x1x3 + x0x2 ) \ 2 ( x1x2 + 

x0x3 ) x0 + x2 — x2 — x? 2 ( x2x3 — x0x? ) I . 2 ( x?x3 — x0x2 ) 2 ( 

x2x3 + x0x? ) x0 + x2 — x? — x2 J 

Show that p is a Lie group homomorphism . Find a formula for the map 

p := dp ( il ) : sp ( 1 ) ^ so ( 3 )  

and show that it is a Lie algebra isomorphism . For x , y e Sp ( 1 ) prove 

that p ( x ) = p ( y ) if and only if y = ±x .  

Example . Consider the map 

GL ( n , R ) ^ Diff ( Rn ) : g ^ 
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which assigns to every nonsingular matrix g e GL ( n , R ) the linear 

diffeo - morphism : Rn ^ Rn given by ( x ) := gx for x e Rn . This map g 

^ $g is a group homomorphism . The group Diff ( Rn ) is infinite 

dimensional and thus cannot be a Lie group . However , it has many 

properties in common with Lie groups . For example one can define what 

is meant by a smooth path in Diff ( Rn ) and extend formally the notion 

of a tangent vector ( as the derivative of a path through a given element 

of Diff ( Rn ) ) to this set - ting . In particular , the tangent space of Diff ( 

Rn ) at the identity can then be identified with the space of vector fields 

TidDiff ( Rn ) = Vect ( Rn ) .  

Differentiating the map g ^ 0g , one then obtains a linear map 

gl ( n , R ) ^ Vect ( Rn ) : <= ^ Xg 

which assigns to every matrix <= e g ! ( n , R ) the vector field Xg : Rn ^ 

Rn given by Xg ( x ) := <=x for x e Rn .  

Example . Let g be a finite dimensional Lie algebra . Then the set . , , IN

 T is a biiective linear map ,  

Aut ( g>:=|T: g"g 

of Lie algebra automorphisms of g is a Lie group . Its Lie algebra is the 

space of derivations on g denoted by 

A is a linear map ,  

A[C , n] = [AC , n] + [C , An] v c , n e g 

Now suppose that g = Lie ( G ) is the Lie algebra of a Lie group G . Then 

there is a map 

ad : G ^ Aut ( g ) , ad ( g ) n := gng - 1 ,   

for g e G and n e g . Lemma ( ii ) asserts that ad ( g ) is indeed a linear 

map from g to itself for every g e G . The reader may verify that the map 

ad ( g ) : g ^ g 
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is a Lie algebra automorphism for every g e G and that the map ad : G ^ 

Aut ( g ) is a Lie group homomorphism . The associated Lie algebra 

homo - morphism is the map 

Ad : g ^ Der ( g ) , Ad ( C ) n :=[C , n] ,   

for C , n e g . To verify the claim Ad = ad we compute 

exp ( tc ) n exp ( - tc ) = [C , n] .  

t=o 

Exercise . Let g be any Lie algebra and define the map 

Ad : g ^ End ( g ) . Prove that the endomorphism 

Ad ( C ) : g ^ g 

is a derivation for every C e g and that Ad : g ^ Der ( g ) is a Lie algebra 

homomorphism . If g is finite dimensional , prove that Aut ( g ) is a Lie 

group with Lie algebra Der ( g ) .  

Smooth Maps and Algebra Homomorphisms 

Let M be a smooth submanifold of Rk . Denote by F ( M ) := C^ ( M , R 

) the space of smooth real valued functions f : M ^ R . Then F ( M ) is a 

commutative unital algebra . Each p e M determines a unital algebra ho - 

momorphism ep : F ( M ) ^ R defined by ep ( f ) = f ( p ) for p e M .  

Theorem . Every unital algebra homomorphism e : F ( M ) ^ R has the 

form e = ep for some p e M .  

Proof . Assume that e : F ( M ) ^ R is an algebra homomorphism .  

Claim . For all f , g e F ( M ) we have e ( g ) = 0 =^ e ( f ) e f ( g - 1 ( 0 ) ) 

. Indeed , the function f — e ( f ) ■ 1 lies in the kernel of e and so the 

func - tion h := ( f — e ( f ) ■ 1 ) 2 + g2 also lies in the kernel of e . 

There must be at least one point p e M where h ( p ) = 0 for otherwise 1 = 

e ( h ) e ( 1 / h ) = 0 . For this point p we have f ( p ) = e ( p ) and g ( p ) = 

0 , hence p e g - 1 ( 0 ) , and therefore e ( f ) = f ( p ) e f ( g - 1 ( 0 ) ) . 

This proves the claim .  
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The theorem asserts that there exists a p e M such that every f e F ( M ) 

satisfies e ( f ) = f ( p ) . Assume , by contradiction , that this is false . 

Then for every p e M there exists a function f e F ( M ) such that f ( p ) = 

e ( f ) . Re - place f by f — e ( f ) to obtain f ( p ) = 0 = e ( f ) . Now use 

the axiom of choice to obtain a family of functions fp e F ( M ) , one for 

every p e M , such that fp ( p ) = 0 = e ( fp ) for all p e M . Then the set 

Up := f - 1 ( R \ {0} ) is an M - open neighborhood of p for every p e M . 

Choose a sequence of com - pact sets Kn C M such that Kn C intM ( Kn 

+ 1 ) for all n and M = IJn Kn . Then , for each n , there is a gn e F ( M ) ( 

a finite sum of the form ^i fp . ) such that e ( gn ) = 0 and gn ( q ) > 0 for 

all q e Kn . If M is compact , this is already a contradiction because a 

positive function cannot belong to the kernel of e . Otherwise , choose f e 

F ( M ) such that f ( q ) > n for all q e M \ Kn and all n e N . Then e ( f ) e 

f ( g - 1 ( 0 ) ) C f ( M \ Kn ) C [n , to ) by the claim and so e ( f ) > n for 

all n . This is a contradiction 

Now let N be another smooth submanifold ( say of R^ ) and let C^ ( M , 

N ) denote the space of smooth maps from M to N . A homomorphism 

from F ( N ) to F ( M ) is a ( real ) linear map T : F ( N ) ^ F ( M ) that 

satisfies 

T ( fg ) = T ( f ) T ( g ) , T ( 1 ) = 1 .  

An automorphism of the algebra F ( M ) is a bijective homomorphism T : 

F ( M ) ^ F ( M ) . Let Hom ( F ( N ) , F ( M ) ) denote the space of ho - 

momorphisms from F ( N ) to F ( M ) . The automorphisms of F ( M ) 

form a group denoted by Aut ( F ( M ) ) .  

Corollary . The pullback operation 

C~ ( M , N ) ^ Hom ( F ( N ) , F ( M ) ) : 0 ^ 0* 

is bijective . In particular , the map Diff ( M ) ^ Aut ( F ( M ) ) : 0 ^ 0* is 

an anti - isomorphism of groups .  

Proof . This is an exercise with hint . Let T : F ( N ) ^ F ( M ) be a unital 

algebra homomorphism . There exists a map 0 : M ^ N  

such that ep o T = e^ ( p ) for all p e M . Prove that f o 0 : M ^ R is 

smooth for every smooth map f : N ^ R and deduce that 0 is smooth .  
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Remark . The pullback operation is functorial , i . e .  

 ( 0 o 0 ) * = 0* o 0* , idM = idF ( M ) .  

for 0 e C^ ( M , N ) and 0 e C^ ( N , P ) . Here id denotes the identity 

map of the space indicated in the subscript . Hence Corollary may be 

summarized by saying that the category of smooth manifolds and smooth 

maps is anti - isomorphic to a subcategory of the category of 

commutative unital algebras and unital algebra homomorphisms .  

Exercise . If M is compact , then there is a slightly different way to prove 

Theorem An ideal in F ( M ) is a linear subspace J C F ( M ) satisfying 

the condition f e F ( M ) , g e J =^ fg e J . A maximal ideal in F ( M ) is 

an ideal J C F ( M ) such that every ideal J' C F ( M ) containing J is 

equal to J . Prove that , if M is compact and J C F ( M ) is an ideal with 

the property that for every p e M there is an f e J with f ( p ) = 0 , then J = 

F ( M ) . Deduce that each maximal ideal in F ( M ) has the form Jp := {f 

e F ( M ) | f ( p ) = 0} for some p e M .  

 

Vector Fields and Derivations 

 

A derivation of F ( M ) is a linear map 5 : F ( M ) ^ F ( M ) that satisfies 

5 ( fg ) = 5 ( f ) g + / 5 ( g ) .  

and the derivations form a Lie algebra denoted by Der ( F ( M ) ) . We 

may think of Der ( F ( M ) ) as the Lie algebra of Aut ( F ( M ) ) with the 

Lie bracket given by the commutator . the pullback operation 

Diff ( M ) ^ Aut ( F ( M ) ) : 0 ^ 0*  

can be thought of as a Lie group anti - isomorphism . Differentiating it at 

the identity 0 = id gives a linear map 

Vect ( M ) ^ Der ( F ( M ) ) : X ^ Lx .   

Here the operator LX : F ( M ) ^ F ( M ) is given by the derivative of a 

function f in the direction of the vector field X , i . e .  
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d 

LXf := df • X = S 

t=0 

where 0t denotes the flow of X . Since the map is the derivative of the 

"Lie group" anti - homomorphism we expect it to be a Lie algebra anti - 

homomorphism . Indeed , one can show that 

l[x , y] = lylx — LXly = - [LX , ly]  

for X , Y <= Vect ( M ) . This confirms that our sign in the definition of 

the Lie bracket is consistent with the standard conventions in the theory 

of Lie groups . In the literature the difference between a vector field and 

the associated derivation LX is sometimes neglected in the notation and 

many authors write Xf := df • X = LXf , thus thinking of a vector field on 

a manifold M as an operator on the space of functions . With this 

notation one obtains the equation [X , Y]f = Y ( Xf ) — X ( Yf ) and here 

lies the origin for the use of the opposite sign for the Lie bracket in many 

books on differential geometry .  
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3.5 LET US SUM UP 

In this unit we have discussed the definition and example of Vector 

Fields and Flows… Vector Fields , Lie Groups , Lie Group 

Homeomorphisms 

3.6 KEYWORDS 

Vector Fields and Flows… Vector Fields ….. Let M C Rk be a smooth m 

- manifold A ( smooth ) vector field on M is a smooth map X : M ^ Rk 

Lie Groups….. Combining the concept of a group and a manifold , it is 

interesting to consider groups which are also manifolds and have the 

property that the group operation and the inverse define smooth maps 

Lie Group Homeomorphisms Let G and H be Lie groups and g and h be 

Lie algebras . A Lie group homomorphism from G to H is a smooth map 

p : G ^ H that is a group homomorphism 

3.7 QUESTIONS FOR REVIEW 

Explain Vector Fields and Flows 

Explain Lie Groups 

3.8 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Vector Fields and Flows ( answer for Check your Progress -  1 Q ) 

Lie Groups  ( answer for Check your Progress -  1 Q )  

3.9 REFERENCE 

 

Differential Geometry, Differential Geometry & Application, 

Introduction to Defferential Geometry, Basic of Differential Geometry. 

  



85 
 

UNIT-IV : VECTOR BUNDLES AND 

SUBMERSIONS 

STRUCTURE 

4.0 Objectives 

4.1 Introduction  

4.2 Vector Bundles And Submersions  

4.3 The Implicit Function Theore 

4.4 Let Us Sum Up 

4.5 Keywords 

4.6 Questions For Review 

4.7 Answers To Check Your Progress 

4.8 References 

4.0 OBJECTIVES 

 

After studying this unit , you should be able to: 

 Understand about Vector Bundles And Submersions   

  The Implicit Function Theore 

4.1 INTRODUCTION 

Differential geometry arose and developed as a result of and in 

connection to the mathematical analysis of curves and surfaces 

Mathematical analysis of curves and surfaces had been developed to 

answer some of unanswered questions that appeared in calculus like the 

reasons for relationships between complex shapes and curves , series and 

analytic functions Vector Bundles And Submersions , The Implicit 

Function Theore 
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4.2 VECTOR BUNDLES AND 

SUBMERSIONS 

Submersions 

Let M c Rk be a smooth m - manifold and N C R be a smooth n - 

manifold . A smooth map f : N ^ M is called a submersion if its 

derivative 

df ( q ) : TqN ^ Tf {q ) M 

is surjective for every q e N .  

 

I 

g f M U P0 

Figure : A local right inverse of a submersion .  

 

Lemma . Let M c Rk be a smooth m - manifold , N c R be a smooth n - 

manifold , and f : N ^ M be a smooth map . The following are equivalent 

.  

f is a submersion .  

For every q0 e N there is an M - open neighborhood U of p0 := f ( q0 ) 

and a smooth map g : U ^ N such that g ( f ( q0 ) ) = q0 and f o g = id : U 

^ U . Thus f has a local right inverse near every point in N ( see Figure 2 

. 10 ) .  

Proof . We prove that ( i ) implies ( ii ) . Since the derivative 

df ( qo ) : TqoN ^ TPoM 

is surjective we have n > m and 

dimker df ( q0 ) = n — m .  
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Hence there is a linear map A : R ^ Rn - m whose restriction to the kernel 

of df ( q0 ) is bijective . Now define the map ^ : N ^ M x Rn - m by 

^ ( q ) := ( f ( q ) , A ( q— qo ) )  

for q e N . Then ^ ( q0 ) = ( p0 , 0 ) and its derivative 

df> ( qo ) : Tqo N ^ TPo M x Rn - m 

sends w e Tq0N to ( df ( q0 ) w , Aw ) and is therefore bijective . Hence 

it follows from the inverse function theorem for manifolds that there is 

an N - open neighborhood V C N of q0 such that the set 

W := ^ ( N ) C M x Rn - m 

is an open neighborhood of ( p0 , 0 ) and ^\y : V ^ W is a 

diffeomorphism . Let 

U := {p e M \ ( p , 0 ) e W} and define the map g : U ^ N by 

g ( p ) := ^ - 1 ( p , 0 ) .  

Then p0 e U , g is smooth and 

0 ) = ^ ( g ( p ) ) = ( f ( g ( p ) ) , A ( g ( p ) - qo ) ) .  

Hence f ( g ( p ) ) = p for all p e U and 

g ( po ) = ^ - 1 ( po , 0 ) = qo .  

Corollary . The image of a submersion f : N ^ M is open .  

Proof . If p0 = f ( q0 ) e f ( N ) then the neighborhood U C M of p0 in 

Lemma ( ii ) is contained in the image of f .  □ 

Corollary . If N is a nonempty compact manifold , M is a connected 

manifold , and f : N ^ M is a submersion then f is surjective and M is 

compact .  

Proof . The image f ( M ) is an open subset of M by Corollary , it is a 

relatively closed subset of M because N is compact , and it is nonempty 

because N is nonempty . Since M is connected this implies that f ( N ) = 

M . In particular , M is compact .  □ 
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Exercise . Let f : N ^ M be a smooth map . Prove that the sets {q e N \ df 

( q ) is injective} and {q e N \ df ( q ) is surjective} are open ( in the 

relative topology of N ) .  

Vector Bundles 

Let M C Rk be an m - dimensional smooth manifold . A ( smooth ) 

vector bundle ( over M of rank n ) is a smooth submanifold E C M x R of 

dimension m + n such that , for every p <= M , the set 

is an n - dimensional linear subspace of R ( called the fiber of E over p ) . 

If E C M x R is a vector bundle then a ( smooth ) section of E is smooth 

map s : M ^ R such that s ( p ) <= Ep for every p <= M . A vector bundle 

E over M is equipped with a smooth map 

n : E —> M 

defined by n ( p , v ) := p This map is called the canonical projection of E 

. A section s : M ^ R of E determines a smooth map a : M ^ E which 

sends the point p <= M to the pair ( p , s ( p ) ) <= E . This map satisfies 

n o a = id .  

It is sometimes convenient to abuse notation and eliminate the distinction 

between s and a . Thus we will sometimes use the same letter s for the 

map from M to R and the map from M to E .  

Example . Let M C Rk be a smooth m - dimensional submanifold .  

The set 

TM := { ( p , v ) | p <= M , v <= TpM} 

is called the tangent bundle of M . This is a subset of M x Rk and , for 

every p <= M , its fiber TpM is an m - dimensional linear subspace of Rk 

by Theorem . However , it is not immediately clear from the definition 

that TM is a submanifold of M x Rk . The sections of TM are the vector 

fields on M .  

Exercise . Let f : M ^ N be a smooth map between manifolds . Prove that 

the tangent map 
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TM ^ TN : ( p , v ) ^ ( f ( p ) , df ( p ) v )  

is smooth 

Exercise . Let V C M^ be an n - dimensional linear subspace . The 

orthogonal projection of M^ onto V is the matrix n e M^x that satisfies 

n = n2 = nT , imn = v .   ( 2 . 6 . 1 )  

Prove that there is a unique matrix n e M^x satisfying Prove that , for 

every symmetric matrix S = ST e M^ , the kernel of S is the orthogonal 

complement of the image of S . If D e M^xn is any injective matrix 

whose image is V , prove that det ( DTD ) = 0 and 

n = D ( DtD ) - 1Dt .  

Theorem ( Vector Bundles ) . Let M C Mk be a smooth m - manifold and 

let E C M x M^ be a subset . Assume that , for every p e M , the set 

Ep := jv e M^ | ( p , v ) e Ej  

is an n - dimensional linear subspace of M^ . Let n : M ^ M^x be the map 

that assigns to each p e M the orthogonal projection of M^ onto Ep , i . e 

.  

n ( p ) = n ( p ) 2 = n ( p ) T , imn ( p ) = Ep .   

Then the following are equivalent .  

E is a vector bundle .  

For every p0 e M and every v0 e Ep0 there is a smooth map s : M ^ M^ 

such that s ( po ) = vo and s ( p ) e Ep for all p e M .  

The map n : M ^ M^x is smooth .  

For every p0 e M there is an open neighborhood U C M of p0 and a 

diffeomorphism n - 1 ( U ) ^ U x Mn : ( p , v ) ^ T ( p , v ) = ( p , Tp ( v ) 

) such that the map Tp : Ep ^ Mn is an isometric isomorphism for all p e 

U .  

For every p0 e M there is an open neighborhood U C M of p0 and a 

diffeomorphism n - 1 ( U ) ^ U x Mn : ( p , v ) ^ T ( p , v ) = ( p , Tp ( v ) 
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) such that the map Tp : Ep ^ Mn is a vector space isomorphism for all p 

e U .  

Condition ( i ) implies that the projection n : E ^ M is a submersion . In ( 

ii ) the section s can be chosen to have compact support , i . e . there is a 

compact subset K C M such that s ( p ) = 0 for p / K .  

Proof .  

n - 1 ( U )  5 » U x Rn .  

 

 

Corollary . Let M c Rk be a smooth m - manifold . Then TM is a vector 

bundle over M and hence is a smooth 2m - manifold in Rk x Rk .  

Proof . Let f : U ^ Q be a coordinate chart on an M - open set U c M with 

values in an open subset Q c Rm . Denote its inverse by ^ := f - 1 : Q ^ M 

. By Theorem the linear map d^ ( x ) : Rm ^ Rk is injective and its image 

is T^ ( x ) M for every x <= Q . Hence the map D : U ^ Rkxm defined by 

D ( p ) := d^ ( f ( p ) ) <= Rkxm 

is smooth and , for every p <= U , the linear map D ( p ) : Rm ^ Rk is 

injec - tive and its image is TpM . Thus the function nTM : M ^ Rkxk 

defined by with Ep = TpM is given by 

nTM ( p ) = D ( p ) ( D ( p ) TD ( p ) ) 1 D ( p ) T for p <= U .  

Hence nTM is smooth and so TM is a vector bundle by Theorem□ 

Let M c Rk be an m - manifold , N c R^ be an n - manifold , f : N ^ M be 

a smooth map , and E c M x Rd be a vector bundle . The pullback bundle 

is the vector bundle f *E ^ N defined by 

f*E := { ( q , v ) <= N x Rd | v <= Ef{q ) ] 

and the normal bundle of E is the vector bundle E± ^ M defined by 

Ex := | ( p , w ) <= M x Rd l ( v , w ) = 0 V v <= Ep j .  
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Corollary . The pullback and normal bundles are vector bundles .  

Proof . Let n = nE : M ^ Rdxd be the map defined by . This map is 

smooth by Theorem Moreover , the corresponding maps for f*E and EE 

are given by 

nf*e = nE o f : n ^ Rdxd , nE± = n - nE : m ^ Rdxd .  

These maps are smooth and hence it follows from Theorem that f*E and 

EE are vector bundles .  □ 

Proof of Theorem . We first assume that E is a vector bundle and prove 

that n : E ^ M is a submersion . Let a : M ^ E denote the zero section 

given by a ( p ) := ( p , 0 ) . Then n o a = id and hence it follows from the 

chain rule that the derivative dn ( p , 0 ) : T ( p , o ) E ^ TpM is surjective 

. Now it follows that for every p <= M there is an e > 0 such that the 

derivative  dn ( p , v ) : T ( p , v ) E ^ TpM is surjective for every v <= 

Ep with |v| < e . Consider the map f : E ^ E defined by 

A ( p , v ) := ( p , Av ) .  

This map is a diffeomorphism for every A > 0 . It satisfies 

n = n o fx 

and hence 

dn ( p , v ) = dn ( p , Av ) o df\ ( p , v ) : T ( p , v ) E ^ TpM .  

Since df\ ( p , v ) is bijective and dn ( p , Av ) is surjective for A < e / |v| 

it follows that dn ( p , v ) is surjective for every p <= M and every v <= 

Ep . Thus the projection n : E ^ M is a submersion for every vector 

bundle E over M .  

We prove that ( i ) implies ( ii ) . Let po <= M and vo <= Ep0 . We have 

already proved that n is a submersion . Hence it follows from Lemma 

that there exists an M - open neighborhood U C M of p0 and a smooth 

map 

a0 : U ^ E 

such that 
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n o ao = id : U ^ U , ao ( po ) = ( po , vo ) .  

Define the map so : U ^ R by 

 ( p , so ( p ) ) := ao ( p ) for p <= U .  

Then so ( po ) = vo and so ( p ) <= Ep for all p <= U . Now choose e > 0 

such that 

{p <= M | |p - po| < e} C U  

and choose a smooth cutoff function ft : Rk ^ [0 , 1] such that ft ( po ) = 1 

and ft ( p ) = 0 for |p — po| > e . Define s : M ^ R by 

s ( w ) = / ^oOp^ if p <= U ( p ) :\ 0 ,  if p <= U .  

This map satisfies the requirements of ( ii ) .  

We prove that ( ii ) implies ( iii ) . Thus we assume that E satisfies ( ii ) . 

Choose p0 G M and a basis v\ , . . . , vn of Ep0 . By ( ii ) there exists 

smooth sections s\ , . . . , sn : M ^ R of E such that Si ( p0 ) = Vi for i = 1 

, . . . , n . Now there exists an M - open neighborhood U C M of p0 such 

that the vec - tors si ( p ) , . . . , sn ( p ) are linearly independent , and 

hence form a basis of Ep for every p G U . Hence , for every p G U , we 

have 

Ep = imD ( p ) , D ( p ) := [si ( p ) ■ ■ ■ sn ( p ) ] G R^xn .  

By Exercise this implies n ( p ) = D ( p ) ( D ( p ) TD ( p ) ) - 1D ( p ) T 

for every p G U .  

Thus every p0 G M has a neighborhood U such that the re - striction of n 

to U is smooth . This shows that ( ii ) implies ( iii ) .  

We prove that ( iii ) implies ( iv ) . Fix a point p0 G M and choose a basis  

v1 , . . . , vn of Ep0 . For p G M define 

D ( p ) := [n ( p ) vi ■ ■ ■ n ( p ) vn] G R^xn 

Then D : M ^ R^xn is a smooth map and D ( p0 ) has rank n . Hence the 

set 

U := {p G M | rankD ( p ) = n} C M 
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is an open neighborhood of p0 and Ep = imD ( p ) for all p G U . Thus 

n - 1 ( U ) = { ( p , v ) G E | p G U} C E 

is an open set containing n - 1 ( p0 ) . Define the map T : n - 1 ( U ) ^ U x 

Rn by 

T ( p , v ) := ( p , Tp ( v ) ) , Tp ( v ) := ( D ( p ) TD ( p ) ) 7D ( p ) Tv for 

p G U and v G Ep . This map is bijective and its inverse is given by 

T - 1 ( p , <= ) = ( p , T - 1 ( <= ) ) , T - 1 ( <= ) = D ( p ) ( D ( p ) TD ( p 

) ) - 1 / 2<= 

for p G U and <= G Rn . Thus T is a diffeomorphism and |Tp ( v ) | = |v| 

for all p G U and all v G Ep . This shows that ( iii ) implies ( iv ) .  

That ( iv ) implies ( v ) is obvious .  

We prove that ( v ) implies ( i ) . Shrinking U if necessary , we may as - 

sume that there exists a coordinate chart 0 : U ^ Q with values in an open 

set Q C Rm . Then the composition ( 0 x id ) o T : n - 1 ( U ) ^ Q x Rn is 

a dif - feomorphism . Thus E C Rk x R^ is a manifold of dimension m + 

n and this proves □ 

Exercise . Construct a vector bundle E C S1 x R2 of rank 1 that does not 

admit a global trivialization , i . e . that is not isomorphic to the trivial 

bundle S1 x R . Such a vector bundle is called a Mobius strip . Define the 

notion of an isomorphism between two vector bundles E and F over M .  

 

4.3 THE IMPLICIT FUNCTION 

THEOREM 

In this subsection we carry over the Implicit Function Theorem in  

Corollary to smooth maps on vector bundles .  

Theorem ( Implicit Function Theorem ) .  

Let M c Rk be a smooth m - manifold , let N c Rk be a smooth n - 

manifold , let E c M x R be a smooth vector bundle of rank n , let W c E 
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be open , and let f : W ^ N be a smooth map . For p e M define fp : Wp ^ 

N by 

Wp := {v e Ep | ( p , v ) e W} , fp ( v ) := f ( p , v ) .  

Let po e M such that 0 e Wp0 and dfp0 ( 0 ) : Tp0 M ^ Tq0N is bijective 

, where q0 := f ( p0 , 0 ) e N . Then there exists a constant e > 0 , open 

neighbor - hoods U0 c M of p0 and V0 c N of q0 , and a smooth map h : 

U0 x V0 ^ such that { ( p , v ) e E | p e U0 , |v| < e} c W and 

h ( p , q ) e Ep , |h ( p , q ) | < e  

for all ( p , q ) e U0 x V0 and 

fp ( v ) = 0 v = h ( p , q )   

for all ( p , q ) e U0 x V0 , and all v e Ep with |v| < e .  

Proof . Choose a coordinate chart ^ : V ^ Rn on an open set V c N con - 

taining q0 . Choose an open neighborhood U c M of p0 such that ( p , 0 ) 

e W and f ( p , 0 ) e V for all p e U , there is a coordinate chart 0 : U ^ Q 

c Rm , and there is a local trivialization T : n - 1 ( U ) ^ U x Rn as in 

Theorem 2 . 6 . 8 with |Tp ( v ) | = |v| for p e U and v e Ep . Define Br := 

{<= e Rn | |<=| < r} and choose r > 0 so small that T - 1 ( U x Br ) c W 

and f o T - 1 ( U x Br ) c V . Define the map F : Q x Rn x Br ^ Rn by 

F ( x , y , <= ) := ^ o f o T - 1 ( 0 - 1 ( x ) , <= ) - y 

for ( x , y ) e Q x Rn and <= e Br . Let x0 := 0 ( p0 ) and y0 := ^ ( q0 ) . 

Then we have F ( x0 , y0 , 0 ) = 0 and the derivative d3F ( x0 , y0 , 0 ) : 

Rn ^ Rn of F with respect to <= at ( x0 , y0 , 0 ) is bijective . Hence 

Corollary A . 2 . 6 asserts that there exist open neighborhoods U0 c U of 

p0 and V0 c V of q0 , a con - stant 0 < e < r , and a smooth map g : 0 ( 

U0 ) x ■0 ( V0 ) ^ Be such that 

F ( x , y , <= ) = 0 g ( x , y ) = <= 

for all ( x , y ) e 0 ( U0 ) x ^ ( V0 ) and all <= e Be . Thus the map 

h : U0 x V0 ^ R* , h ( p , q ) := T - 1 ( g ( 0 ( p ) , ^ ( q ) ) ) ,  

satisfies the requirements of Theorem □ 
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The Theorem of Frobenius 

Let M c Rk be an m - dimensional manifold and n be a nonnegative 

integer . A subbundle of rank n of the tangent bundle TM is a subset E c 

TM that is itself a vector bundle of rank n over M , i . e . it is a 

submanifold of TM and the fiber Ep = {v e TpM | ( p , v ) e E} is an n - 

dimensional linear subspace of TpM for every p e M . Note that the rank 

n of a subbundle is necessarily less than or equal to m . In the literature a 

subbundle of the tangent bundle is sometimes called a distribution on M . 

We shall , however , not use this terminology in order to avoid confusion 

with the concept of a distribution in the functional analytic setting .  

Definition . Let M c Rk be an m - dimensional manifold and E c TM be a 

subbundle of rank n . The subbundle E is called involutive if , for any 

two vector fields X , Y e Vect ( M ) , we have 

X ( p ) , Y ( p ) e Ep Vp e M =^ [X , Y] ( p ) e Ep Vp e M .  

The subundle E is called integrable if , for every p0 e M , there exists a 

submanifold N c M such that p0 e N and TpN = Ep for every p e N . A 

foliation box for E is a coordinate chart $ : U ^ Q on an M - open subset  

U c M with values in an open set Q c Rn x Rm - n such that the set Q n ( 

Rn x {y} ) is connected for every y e Rm - n and , for every p e U and 

every v e TpM , we have 

v e Ep d$ ( p ) v e Rn x {0} .  

 

Theorem ( Frobenius ) . Let M c Rk be an m - dimensional manifold , 

and E c TM be a subbundle of rank n . Then the following are equivalent 

.  

E is involutive .  

E is integrable .  

For every p0 e M there is a foliation box $ : U ^ Q with p0 e U . It is easy 

to show that ( iii ) =^ ( ii ) =^ ( i ) ( see below ) . The hard part of the 

theorem is to prove that ( i ) ( iii ) . This requires the following lemma .  
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Lemma . Let E c TM be an involutive subbundle and X e Vect ( M ) be a 

complete vector field such that X ( p ) e Ep for every p e M . Denote by 

R ^ Diff ( M ) : t ^ ft 

the flow of X . Then , for all t e R and p e M , we have 

dft ( p ) Ep = E^ .   

Lemma Let po e M , choose a foliation box f : U ^ Q for E with p0 e U , 

and define 

N := ( p e U | f ( p ) e Rn x {yo}} 

where ( x0 , y0 ) := f ( p0 ) e Q . Then N satisfies the requirements of ( ii 

) .  

We prove that ( ii ) implies ( i ) . Choose two vector fields X , Y e Vect ( 

M ) that satisfy X ( p ) , Y ( p ) e Ep for all p e M and fix a point p0 e M . 

Then , by ( ii ) , there exists a submanifold N c M containing p0 such that 

TpN = Ep for every p e N . Hence the restrictions X|N and Y|N are 

vector fields on N and so is the restriction of the Lie bracket [X , Y] to N 

. Thus we have [X , Y] ( p0 ) e Tp0N = Ep0 as claimed .  

We prove that ( i ) implies ( iii ) . Thus we assume that E is an involutive 

subbundle of TM and fix a point p0 e M . By Theorem there exist vector 

fields Xi , . . . , Xn e Vect ( M ) such that Xj ( p ) e Ep for all i and p and 

the vectors X1 ( p0 ) , . . . , Xn ( p0 ) form a basis of Ep0 . Using 

Theorem again we find vector fields Y1 , . . . , Ym - n e Vect ( M ) such 

that the vectors 

Xi ( p0 ) , . . . , Xn ( p0 ) , Yi ( p0 ) , . . . , Ym - n ( p0 )  

form a basis of Tp0M . Using cutoff functions as in the proof of Theorem 

we may assume without loss of generality that the vector fields Xj and Yj 

have compact support and hence are complete . Denote by fi , . . . , $n the 

flows of the vector fields X1 , . . . , Xn , respectively , and by 44 , . . . , - 

n the flows of the vector fields Y1 , . . . , Ym - n . Define the map 

^ : Rn x Rm - n ^ M 

by 
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By Lemma , this map satisfies 

dE 

dx ( x , y ) G Ep ( x , y )  

for all x G Rn and y G Rm - n . Moreover ,  

g ( o . ° ) = Xi{pa ) .   ( o . ° ) = r , ( Kl ) ,  

and so the derivative 

# ( 0 , 0 ) : Rn x Rm - n ^ Tp0M 

is bijective . Hence , by the Inverse Function Theorem there is an open 

neighborhood Q c Rn x Rm - n of the origin such that the set 

U := E ( Q ) C M 

is an M - open neighborhood of p0 and E|n : Q ^ U is a diffeomorphism . 

Thus the vectors d^ / dx^ ( x , y ) are linearly independent for every ( x , 

y ) G Q and , by form a basis of E^ ( x>y ) . Hence 

f := ( E|n ) - 1 : U ^ Q is a foliation box and this proves Theorem□ 

To complete the proof of the Frobenius theorem it remains to prove 

Lemma This requires the following result .  

Lemma . Let E C TM be an involutive subbundle . If ft : R2 ^ M is a 

smooth map such that 

dB dB 

— ( s 0 ) G Ep ( s , o ) , - djf ( s , t ) G Eh ( s>t ) ,   

for all s , t G R then 

3B 

— ( s , t ) G Ep ( s , t ) ,   

for all s , t G R .  

Lemma Let X e Vect ( M ) be a complete vector field satisfying X ( p ) e 

Ep for every p e M and let ftt be the flow of X . Choose a point po e M 
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and a vector v0 e Ep0 . By Theorem there is a vector field Y e Vect ( M ) 

with values in E such that Y ( p0 ) = v0 . Moreover this vector field may 

be chosen to have compact support and hence it is complete Thus there is 

a solution 7 : R ^ M of the initial value problem 

Y ( s ) = Y ( Y ( s ) ) Y ( 0 ) = Po .  

Define - : R2 ^ M by 

 - ( s , t ) := ft ( Y ( s ) )  

for s , t e R . Then 

Is ( s , 0 ) = 7 ( s ) = Y ( Y ( s ) ) e Efj ( s , 0 ) ,  

d - ( s , t ) = X ( P ( s , t ) ) e Ef ( s , t ) for all s , t e R . Hence it follows 

from Lemma that 

d<=f 

ds 

for every t e R . □ 

Proof of Lemma . Given any point p0 e M we choose a coordinate chart 

ft : U ^ H , defined on an M - open set U C M with values in an open set 

H C Rn x Rm - n , such that p0 e U and dft ( p0 ) EP0 = Rn x {0} . 

Shrinking U , if necessary , we obtain that dft ( p ) EP is the graph of a 

matrix A e R ( m - n ) xn for every p e U . Thus there is a map A : H ^ R 

( m - n ) xn such that , for every p e U , we have 

dft ( p ) Ep = { ( e , A ( x , y ) C ) | e e Rn} , ( x , y ) := ft ( p ) e H . ( 2 . 7 

. 6 )  

For ( x , y ) e H we define the linear maps 0 , 4 OA 

d -  ( x , y ) : Rn ^ R ( m - n ) xn ,   ( x , y ) : Rm - n ^ R ( m - n ) xn 

dx dy 

by 

 ( ) e ^ edA ( ) dA ( ) m - 1 dA ( )  
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dx ( x , y ) ■e := <= e dxi ( x , y ) , w ( x , y ) ■n := g dj ( x , y ) ,  

for e = ( Ci , . . . , en ) e Rn and y = ( y^ . . . , ym - n ) e Rm - n .  

Claim 1 . Let ( x , y ) G Q , Z , Z' G Rn and define n , n' G Rm n by n := 

A ( x , y ) Z and n' := A ( x , y ) Z' . Then 

 ( dA , , . dA \ \ ( dA , dA \ 

\dx y ■ Z + w ( x'y ) ■ "T = lte ( x'y ) ■ Z + w ( x'y ) ■" ) Z 

The graphs of the matrices A ( z ) determine a subbundle E c Q x Rm 

with fibers 

Ez := { ( Z , n ) G Rn X Rm - n | n = A ( x , y ) Z} for z = ( x , y ) G Q . 

This subbundle is the image of 

E|u := { ( p , v ) | p G U , v G Ep} 

under the diffeomorphism TM|u ^ Q x Rm : ( p , v ) ^ ( fi ( p ) , dfi ( p ) v 

) and hence it is involutive . Now define the vector fields Z , Z' : Q ^ Rm 

by 

Z ( z ) := ( Z , A ( z ) Z ) , Z' ( z ) := ( Z' , A ( z ) Z' ) , z G Q .  

Then Z and Z' are sections of E and their Lie bracket [Z , Z'] is given by 

[Z , Z'] ( z ) = l0 , ( dA ( z ) Z' ( z ) ) Z ( z ) -  ( dA ( z ) Z ( z ) ) C' ( z ) ) .  

Since E is involutive the Lie bracket [Z , Z'] must take values in the 

graph of A .  

Claim 2 . Let I , J c R be open intervals and z = ( x , y ) : 12 ^ Q be a 

smooth map . Fix two points so G I and to G J and assume that 

dS ( so , to ) = A ( x ( so , to ) , y ( so , to ) ) dS ( so , to ) ,   

ddt ( s , t ) = A ( x ( s , t ) , y ( s , t ) ) | ( s , t )   

for all s G I and t G J . Then 

dS ( so , t ) = A ( x ( so , t ) , y ( so , t ) ) dS ( so , t )   

for all t G J .  
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Equation holds by assumption for t = to . Moreover , dropping the 

argument z ( so , t ) = z = ( x , y ) for notational convenience we obtain 

d f dy . dx \ d2y . d2x f dA dx dA dy \ dx 

dt \ds ds J dsdt dsdt \ dx dt + dy dt J ds 

d2y ^ d2x f dA dx dA f ^ dx ^ dx 

dsdt dsdt \dx dt dy \ dt ) ) ds d2y ^ d2x f dA dx dA f ^ dx ^ dx 

dsdt dsdt \dx ds dy \ ds ) ) dt d2y ^ d2x f dA dx ^dA dy \ dx 

dsdt dsdt \ dx ds dy ds J dt 

fdA fdy . dx\\ dx + \ dy \ ds ds j j dt 

dA f dy dx \\ dx 

dy \ ds ds J J dt 

Here the second step follows from the third equation follows from Claim 

1 , and the last step follows by differentiating equation with respect to s . 

Define p : J ^ Rm - n by 

^ ( t ) := Ids ( so , t ) - A ( x ( so , t ) , y ( so , t ) ) ( so , t ) .  

By and what we have just proved , the function p satisfies the linear 

differential equation 

n ( t ) = ( dy ( x ( so , t ) , y ( ^t ) ) ■ n ( t ) ) ^ ( so , t ) , n ( to ) = 0 .  

Hence p ( t ) = 0 for all t e J . This proves and Claim 2 .  

Now let P : R2 ^ M be a smooth map satisfying and fix a real number so . 

Consider the set W := {t e R dsP ( so , t ) e Ep ( s0>t ) } . By going to 

local coordinates , we obtain from Claim 2 that W is open . Moreover , 

W is obviously closed , and W = 0 because 0 e W by Hence W = R . 

Since so e R was chosen arbitrarily . □ 

Any subbundle E c TM determines an equivalence relation on M via 

there is a smooth curve 7 : [0 , 1] ^ M  ( 27i0 )  

po Pi => such that 7 ( 0 ) = po , 7 ( 1 ) = p\ , Y ( t ) e EY ( t ) V t . )  
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If E is integrable this equivalence relation is called a foliation and the 

equivalence class of po e M is called the leaf of the foliation through po  

Example . Consider the torus M := S1 x S1 C C2 with the tangent bundle 

TM = { ( zi , z2 , iAiZi , iA2^2 ) <= C4 | |zi| = |z2| = 1 , Ai , A2 <= R} . 

Let wi , w2 be real numbers and consider the subbundle 

E := { ( zi , Z2 , itwizi , UW2Z2 ) <= C4 | |zi| = |Z21 = 1 , t <= R} .  

The leaf of this subbundle through z = ( zi , z2 ) <= T2 is given by 

It is a submanifold if and only if the quotient wi / u2 is a rational number 

( or w2 = 0 ) . Otherwise each leaf is a dense subset of T2 .  

Exercise . Consider the manifold M = S3 C R4 = C2 and define 

E :={ ( z , Z ) <= C2 x C2 | |z| = 1 , Z A z , iZ T z} .  

Thus the fiber 

Ez C Tz S3 = z± 

is the maximal complex linear subspace of TzS3 . Prove that E has real 

rank 2 and is not integrable .  

Exercise . Let E C TM be an involutive subbundle of rank n and let L C 

M be a leaf of the foliation determined by E . A subset V C L is called L 

- open if it can be written as a union of sub manifolds N of M with 

tangent spaces TpN = Ep for p <= N . Prove that the L - open sets form a 

topology on L ( called the intrinsic topology ) . Prove that the obvious 

inclusion 1 : L ^ M is continuous with respect to the intrinsic topology on 

L . Prove that the inclusion 1 : L ^ M is proper if and only if the intrinsic 

topology on L agrees with the relative topology inherited from M ( called 

the extrinsic topology ) .  

The Intrinsic Definition of a Manifold* 

It is somewhat restrictive to only consider manifolds that are embedded 

in some Euclidean space . Although we shall see that ( at least ) every 

compact manifold admits an embedding into a Euclidean space , such an 

embedding is in many cases not a natural part of the STRUCTURE of a 
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manifold . In particular , we encounter manifolds that are described as 

quotient spaces and there are manifolds that are embedded in certain 

infinite dimensional Hilbert spaces . For this reason it is convenient , at 

this point , to introduce a more general intrinisc definition of a manifold . 

5 This requires some background from point set topology that is not 

covered in the first year analysis courses . We shall then see that all the 

definitions and results of this chapter carry over in a natural manner to 

the intrinsic setting . We begin by recalling the intrinsing definition of a 

smooth manifold in  .  

Definition ( Smooth m - Manifold ) . Let m <= No and M be a set . A 

chart on M is a pair ( $ , U ) where U C M and $ is a bijection from U to 

an open set $ ( U ) C Rm . Two charts ( $1 , U1 ) , ( $2 , U2 ) are called 

com - patible iff $1 ( U1 fl U2 ) and $2 ( U1 n U2 ) are open and the 

transition map 

$21 = $2 ◦ 1: $1 ( U1 n U2 ) ^ $2 ( U1 n U2 )  

is a diffeomorphism . A smooth atlas on M is a collection A of charts on 

M any two of which are compatible and such that the sets U , as ( $ , U ) 

ranges over A , cover M ( i . e . for every p <= M there is a chart ( $ , U ) 

<= A with p <= U ) . A maximal smooth atlas is an atlas which contains 

every chart which is compatible with each of its members . A smooth m - 

manifold is a pair consisting of a set M and a maximal atlas A on M .  

In Lemma it was shown that , if A is an atlas , then so is the collection A 

of all charts compatible with each member of A . Moreover , the atlas A 

is maximal , so every atlas extends uniquely to a maximal atlas . For this 

reason , a manifold is usually specified by giving its underlying set M 

and some atlas on M . Generally , the notation for the atlas is suppressed 

and the manifold is denoted simply by M . The members of the atlas are 

called coordinate charts or simply charts on M . By Lemma a smooth m - 

manifold admits a unique topology such that , for each chart ( 0 , U ) of 

the smooth atlas , the set 

U C M 
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is open and the bijection 

0 : U ^ 0 ( U )  

is a homeomorphism onto the open set 0 ( U ) C Rm . This topology is 

called the intrinsic topology of M and is described in the following 

definition .  

Definition Let M be a smooth m - manifold . The intrinsic topology 

on the set M is the topology induced by the charts , i . e . a subset 

W C M 

is open in the intrinsic topology iff 0 ( U n W ) is an open subset of Rm 

for every chart ( 0 , U ) on M .  

Example . The complex projective space CPn is the set 

CPn = {<= C Cn + 111 is a 1 - dimensional complex subspace} of 

complex lines in Cn + 1 . It can be identified with the quotient space 

CPn = ( Cn + 1 \ {0} ) / C* 

of nonzero vectors in Cn + 1 modulo the action of the multiplicative 

group C* = C \ {0} of nonzero complex numbers . The equivalence class 

of a nonzero vector z = ( z0 , . . . , zn ) <= Cn + 1 will be denoted by 

[z] = [zo : Z1 : ■ ■ ■ : Zn] := {Az | A <= C*} 

and the associated line is I = Cz . An atlas on CPn is given by the open 

cover Ui := {[z0 : ■ ■ ■ : zn] | zi = 0} for i = 0 , 1 , . . . , n and the 

coordinate charts 0i : Ui ^ Cn are 

«[zo : ■ ■ ■ : zn] ) := ( z0 , . . . , ^ , zi±1 , . . . , .   

zi zi zi zi 

Exercise: Prove that each 0j is a homeomorphism and the transition maps 

are holomorphic . Prove that the manifold topology is the quotient 

topology , i . e . if n : Cn + 1 \ {0} ^ CPn denotes the obvious projection , 

then a sub - set U C CPn is open if and only if n - 1 ( U ) is an open 

subset of Cn + 1 \ {0} .  
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Example . The real projective space RPn is the set 

RPn = {! C Rn + 111 is a 1 - dimensional linear subspace} 

of real lines in Rn + 1 . It can again be identified with the quotient space 

RPn = ( Rn + 1 \ {0} ) / R* 

of nonzero vectors in Rn + 1 modulo the action of the multiplicative 

group R* = R \ {0} of nonzero real numbers , and the equivalence class 

of a nonzero vector x = ( x0 , . . . , xn ) <= Rn + 1 will be denoted by 

[x] = [x0 : x1 : ■ ■ ■ : xn] := {Ax | A <= R*} .  

An atlas on RPn is given by the open cover 

Uj := {[xo : ■ ■ ■ : xn] | xj = 0} 

and the coordinate charts 0i : Ui ^ Rn are again given by , with zj 

replaced by xj .  

Example . The real n - torus is the topological space 

Tn := Rn / Zn 

equipped with the quotient topology . Thus two vectors x , y e Rn are 

equivalent if their difference x — y e Zn is an integer vector and we 

denote by n : Rn ^ Tn the obvious projection which assigns to each 

vector x e Rn its equivalence class 

n ( x ) := [x] := x + Zn .  

Then a set U C Tn is open if and only if the set n - 1 ( U ) is an open 

subset of Rn . An atlas on Tn is given by the open cover 

Ua := {[x] | x e Rn , |x — a\ < 1 / 2} ,  

parametrized by vectors a e Rn , and the coordinate charts <fia : Ua ^ Rn 

defined by 0a ( [x] ) := x for x e Rn with \x — a\ < 1 / 2 . Exercise: Show 

that each transition map for this atlas is a translation by an integer vector 

.  

Example . Consider the complex Grassmannian 
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Gk ( Cn ) := {V C Cn \ v is a k - dimensional complex linear subspace} .  

This set can again be described as a quotient space Gk ( Cn ) = Fk ( Cn ) 

/ U ( k ) . Here 

Fk ( Cn ) := {D e Cnxk \ D*D = ll} 

denotes the set of unitary k - frames in Cn and the group U ( k ) acts on 

Fk ( Cn ) contravariantly by D ^ Dg for g e U ( k ) . The projection 

n : Fk ( Cn ) ^ Gk ( Cn )  

sends a matrix D e Fk ( Cn ) to its image V := n ( D ) := im D . A subset 

U C Gk ( Cn ) is open if and only if n - 1 ( U ) is an open subset of Fk ( 

Cn ) . Given a k - dimensional subspace V C Cn we can define an open 

set UV C Gk ( Cn ) as the set of all k - dimensional subspaces of Cn that 

can be represented as graphs of linear maps from V to V^ . This set of 

graphs can be identified with the complex vector space HomC ( V , V^ ) 

of complex linear maps from V to V^ and hence with C ( n - k ) xk . This 

leads to an atlas on Gk ( Cn ) with holomorphic transition maps and 

shows that Gk ( Cn ) is a manifold of complex dimension kn — k2 . 

Exercise: Verify the details of this construction . Find explicit formulas 

for the coordinate charts and their transition maps . Carry this over to the 

real setting . Show that CPn and RPn are special cases .  

Example ( The real line with two zeros ) . A topological space M is 

called Hausdorff if any two points in M can be separated by disjoint open 

neighborhoods . This example shows that a manifold need not be a 

Hausdorff space . Consider the quotient space 

M := R x {0 , 1} / = 

where [x , 0] = [x , 1] for x = 0 . An atlas on M consists of two 

coordinate charts 0o : U0 ^ R and : Ui ^ R where 

Ui := {[x , i] | x <= R} , 0j ( [x , i] ) := x 

for i = 0 , 1 . Thus M is a 1 - manifold . But the topology on M is not 

Hausdorff , because the points [0 , 0] and [0 , 1] cannot be separated by 

disjoint open neighborhoods .  



Notes 

106 
 

Example . Consider the vector space X = R x R2 with the equivalence 

relation 

[ti . xi . wi=[t2 . x2 . y2] ~ otf yiy = y20= . 0 - % - + :iyi=t2 + xm 

or yi = y2 = 0 , 11 = t2 , xi = x2 .  

For y = 0 we have [0 , x , y] = [t , x — t / y , y] , however , each point ( x 

, 0 ) on the x - axis gets replaced by the uncountable set R x{ ( x , 0 ) } . 

Our manifold is the quotient space M := X / = . This time we do not use 

the quotient topology but the topology induced by our atlas Definition . 

The coordinate charts are parametrized by the reals: for t <= R the set Ut 

C M and the coordinate chart 0t : Ut ^ R2 are given by 

Ut := {[t , x , y] | x , y <= R} , & ( [t , x , y] ) := ( x , y ) .  

A subset U C M is open , by definition , if 0t ( U n Ut ) is an open subset 

of R2 for every t <= R . With this topology each 0t is a homeomorphism 

from Ut onto R2 and M admits a countable dense subset S := {[0 , x , y] | 

x , y <= Q} . However , there is no atlas on M consisting of countably 

many charts . ( Each coordinate chart can contain at most countably 

many of the points [t , 0 , 0] . ) The function f : M ^ R given by f ( [t , x , 

y] ) := t + xy is smooth and each point [t , 0 , 0] is a critical point of f 

with value t . Thus f has no regular value . Exercise: Show that M is a 

path - connected Hausdorff space .  

In Theorem we will show that smooth manifolds whose topology is 

Hausdorff and second countable are precisely those that can be 

embedded in Euclidean space . Most authors tacitly assume that 

manifolds are Hausdorff and second countable and so will we after the 

end of the present chapter . However before there is no need to impose 

these hypotheses .  

Smooth Maps and Diffeomorphisms 

Our next goal is to carry over all the definitions from embedded 

manifolds in Euclidean space to the intrinsic setting .  

Definition ( M , { ( 0a , Ua ) }a ( EA ) , ( N , { ( tp , Vp ) W )  
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be smooth manifolds . A map f : M ^ N is called smooth if it is 

continuous and the map is smooth for every a <= A and every ft <= B . It 

is called a diffeomorphism if it is bijective and f and f
 - 1

 are smooth . 

The manifolds M and N are called diffeomorphic if there exists a 

diffeomorphism f : M ^ N .  

The reader may check that the notion of a smooth map is independent of 

the atlas used in the definition , that compositions of smooth maps are 

smooth , and that sums and products of smooth maps from M to R are 

smooth .  

Check your Progress -  1 

Discuss Vector Bundles  

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Submersions 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

 .  

4.4LET US SUM UP 

In this unit we have discussed the definition and example of Vector 

Bundles And Submersions , The Implicit Function Theorem 

 

4.5 KEYWORDS 

Vector Bundles And Submersions …. Submersions Let M c Rk be a 

smooth m - manifold and N C R be a smooth n - manifold . A smooth 

map f : N ^ M is called a submersion if its derivative 
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The Implicit Function Theorem …..In this subsection we carry over the 

Implicit Function Theorem in Corollary to smooth maps on vector 

bundles .  

4.6 QUESTIONS FOR REVIEW 

Explain Vector Bundles  

Explain Submersions  

4.7 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Vector Bundles   ( answer for Check your Progress -  1 Q )  

Submersions  ( answer for Check your Progress -  1 Q )  
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Differential Geometry, Differential Geometry & Application, 

Introduction to Defferential Geometry, Basic of Differential Geometry. 
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UNIT-V : GEODESICS  

STRUCTURE 

5.0 Objectives 

5.1 Introduction  

5.2 Geodesics  

5.3 Exponential Map 

5.4 Let Us Sum Up 

5.5 Keywords 

5.6 Questions For Review 

5.7 Answers To Check Your Progress 

5.8 References 

5.0 OBJECTIVES 

 

After studying this unit , you should be able to: 

 Understand about Geodesics  

 Exponential Map 

5.1 INTRODUCTION 

Differential geometry arose and developed as a result of and in 

connection to the mathematical analysis of curves and surfaces 

Mathematical analysis of curves and surfaces had been developed to 

answer some of unanswered questions that appeared in calculus like the 

reasons for relationships between complex shapes and curves , series and 

analytic functions Geodesics , Exponential Map 
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5.2 GEODESICS  

This chapter introduces Geodesics in Riemannian manifolds . It begins in 

by introducing geodesics as extremals of the energy and length 

functionals and characterizing them as solutions of a second order 

differential equation . In we show that minimizing the length with fixed 

endpoints gives rise to an intrinsic distance function d : M x M ^ r which 

induces the topology M inherits from the ambient space rn . introduces 

the exponential map , shows that geodesics minimize the length on short 

time intervals , establishes the existence of geodesically convex 

neighborhoods , and shows that the geodesic flow is complete if and only 

if ( M , d ) is a complete metric space , and that in the complete case any 

two points are joined by a minimal geodesic . discusses geodesics in the 

intrinsic setting .  

 

Length and Energy 

The concept of a geodesic in a manifold generalizes that of a straight line 

in Euclidean space . A straight line has parametrizations of form t ^ p + a 

( t ) v where a : r ^ r is a diffeomorphism and p , v <= rn . Different 

choices of a yield different parametrizations of the same line . Certain 

parametrizations are preferred , for example those parametrizations 

which are "proportional to the arclength" , i . e . where a ( t ) = at + b for 

constants a , b <= r , so that the tangent vector a ( t ) v has constant 

length . The same distinctions can be made for geodesics . Some authors 

use the term geodesic to include all parametrizations of a geodesic while 

others restrict the term to cover only geodesics parametrized proportional 

to arclength . We follow the latter course , referring to the more general 

concept as a "reparametrized geodesic" . Thus a reparametrized geodesic 

need not be a geodesic .  

We assume throughout that M C rn is a smooth m - manifold .  

Definition ( Length and Energy ) . Let I =[a , b] C r be a com - pact 

interval with a < b and let 7 : I ^ M be a smooth curve in M . The length 

L ( y ) and the energy E ( 7 ) are defined by 
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L ( 7 ) := f |'y ( t ) |  

J a 

1 r b 

E ( y ) := 2 Ja l^ ( t ) |2 dt .   

A variation of 7 is a family of smooth curves 7s : I ^ M , where s ranges 

over the reals , such that the map r x I ^ M : ( s , t ) ^ Ys ( t ) is smooth 

and 

Yo = 7 .  

The variation ( 7s}seR is said to have fixed endpoints if 7s ( a ) = 7 ( a ) 

and Ys ( b ) = 7 ( b ) for all s e r .  

Remark . The length of a continuous function 7 : [a , b] ^ rn can be 

defined as the supremum of the numbers ^N1 |y ( tj ) — 7 ( ti - i ) | over 

all partitions a = t0 <t1 < ••• <tN = b of the interval [a , b] . By a theorem 

in first year analysis this supremum is finite whenever 7 is continuously 

differentiable .  

We shall sometimes suppress the notation for the endpoints of a , b e I . 

When y ( a ) = p and 7 ( b ) = q we say that 7 is a curve from p to q . One 

can always compose 7 with an affine reparametrization t' = a + ( b — a ) 

t to obtain a new curve Y' ( t ) := Y ( t' ) on the unit interval 0 < t < 1 . 

This new curve satisfies L ( y' ) = L ( y ) and E ( y' ) = ( b — a ) E ( 7 ) . 

More generally , the length L ( y ) , but not the energy E ( y ) , is 

invariant under reparametrization .  

Remark ( Reparametrization ) . Let I = [a , b] and I' = [a' , b'] be compact 

intevrals . If 7 : I ^ rn is a smooth curve and a : I' ^ I is a smooth function 

such that a ( a' ) = a , a ( b' ) = b , and a ( t ) > 0 for all t e I' , then 

L ( Y o a ) = l ( y ) .   

To see this , we compute 

Here second equation follows from the chain rule and the fact that a ( t' ) 

> 0 for all t' e [a' , b'] , and the third equation follows from the change of 

variables formula for the Riemann integral .  
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Theorem ( Characterization of Geodesics ) . Let I =[a , b] C r be a 

compact interval and let y : I m M be a smooth curve . Then the 

following are equivalent .  

 ( i ) y is an extremal of the energy functional , i . e .  

d 

e ( Y s ) = 0 

s=0 

for every variation ( Ys}seR of y with fixed endpoints .  

 ( ii ) y is parametrized proportional to the arclength , i . e . the veloc - ity 

|Y ( t ) | = c > 0 is constant , and either y is constant , i . e . y ( t ) = p = q 

for all t <= I , or c > 0 and y is an extremal of the length functional , i . e .  

d 

ds 

L ( Y s ) = 0 

s=0 

for every variation ( Ys}seR of y with fixed endpoints .  

The velocity vector of y is parallel , i . e . VY ( t ) = 0 for all t <= I .  

The acceleration of y is normal to M , i . e . Y ( t ) L TY ( t ) M for all t 

<= I .  

If ( $ , y , y' ) is a development of M along M' = rm , then y' : I m Rm is a 

straight line parametrized proportional to the arclength , i . e . 7' = 0 .  

Definition ( Geodesic ) . A smooth curve y : I m M on an interval I is 

called a geodesic if its restriction to each compact subinterval satisfies 

the equivalent conditions of Theorem So y is a geodesic if and only if 

VY ( t ) = 0 for all t <= I .   

By the Gaufi - Weingarten formula with X = y this is equivalent to 

Y ( t ) = h7 ( t ) ( 7 ( t ) , Y ( t ) ) for all t <= I .   
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Remark ( i ) The conditions ( i ) and ( ii ) in Theorem are meaningless 

when I is not compact because then the curve has at most one endpoint 

and the length and energy integrals may be infinite . However , the 

conditions ( iii ) , ( iv ) , and ( v ) in Theorem are equivalent for smooth 

curves on any interval , compact or not .  

 ( ii ) The function s m E ( ys ) associated to a smooth variation is always 

smooth and so condition ( i ) in Theorem is meaningful . However , more 

care has to be taken in part ( ii ) because the function s m L ( ys ) need 

not be differentiable . However , it is differentiable at s = 0 whenever y ( 

t ) = 0 for all t I .  

ds 

The Space of Paths 

Fix two points p , q <= M and a compact interval I = [a , b] and denote 

by 

Qp , q := Qp , q ( I ) := {7 : I ^ M | 7 is smooth and 7 ( a ) = p , 7 ( b ) = 

q} 

the space of smooth curves in M from p to q , defined on the interval I . 

Then the length and energy are functional L , E : Qp , q ^ r and their 

extremal points can be understood as critical points as we now explain .  

We may think of the space Qp , q as a kind of "infinite dimensional man 

- ifold" . This is to be understood in a heuristic sense and we use these 

terms here to emphasize an analogy . Of course , the space Qp , q is not a 

manifold in the strict sense of the word . To begin with it is not 

embedded in any finite dimensional Euclidean space . However , it has 

many features in common with manifolds . The first is that we can speak 

of smooth curves in Qp , q . Of course Qp , q is itself a space of curves in 

M . Thus a smooth curve in Qp , q would then be a curve of curves , 

namly a map r ^ Qp , q : s ^ ys that as - signs to each real number s a 

smooth curve Ys : I ^ M satisfying 7s ( a ) = p and ys ( b ) = q . We shall 

call such a curve of curves smooth if the associated map r x I ^ M : ( s , t 

) ^ 7s ( t ) is smooth . Thus smooth curves in Qp , q are the variations of 

7 with fixed endpoints introduced 
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Having defined what we mean by a smooth curve in Qp , q we can also 

differentiate such a curve with respect to s . Here we can simply recall 

that , since M c rn , we have a smooth map r x I ^ rn and the derivative of 

the curve s ^ Ys in Qp , q can simply be understood as the partial 

derivative of the map ( s , t ) ^ 7s ( t ) with respect to s . Thus , in analogy 

with embed - ded manifolds , we define the tangent space of the space of 

curves Qp , q at y as the set of all derivatives of smooth curves r ^ Qp , q 

: s ^ Ys passing through y , i . e .  

Ys r ^ Qp , q : s ^ ys is smooth and y0 = 7 

Let us denote such a partial derivative by X ( t ) := JS| 0 Ys ( t ) <= T7 ( - 

t ) M . Thus we obtain a smooth vector field along 7 . Since Ys ( a ) = p 

and 7S ( b ) = q for all s , this vector field must vanish at t = a , b . This 

suggests the formula 

T7Qp , q = {X e Vect ( Y ) | X ( a ) = 0 , X ( b ) = 0} .  

That every tangent vector of the path space Qp , q at 7 is a vector field 

along 7 vanishing at the endpoints follows from the above discussion . 

The converse inclusion is the content of the next lemma .  

Lemma . Let p , q <= M , y <= Qp , q , and X <= Vect ( Y ) with X ( a ) 

= 0 and X ( b ) = 0 . Then there exists a smooth map r ^ Qp>q : s ^ 7s 

such that 

Yo ( t ) = Y ( t ) qS 

Ys ( t ) = X ( t ) for all t <= I .   

s=0 

Proof . The proof has two steps .  

Step 1 . There exists smooth map M x I ^ rn : ( r , t ) ^ Yt ( r ) with 

compact support such that Yt ( r ) <= TrM for all t <= I and r <= M , Yt ( 

r ) = 0 for all t <= I and all r <= M \ K , and Ya ( r ) = Yb ( r ) = 0 for all r 

<= M .  

Define Zt ( r ) := n ( r ) X ( t ) for t <= I and r <= M . Choose an open set 

U C rn such that y ( I ) C U and U n M is compact ( e . g . take U := ( 
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Ja<t<b B<= ( Y ( t ) ) for e > 0 sufficiently small ) . Now let ft : rn ^ [0 , 

1] be a smooth cutoff function with support in the unit ball such that , 0 ( 

0 ) = 1 and define the vector fields Yt by Yt ( r ) := ft ( e - 1 ( r — y ( t ) ) 

) Zt ( r ) for t <= I and r <= M .  

Step 2 . We prove the lemma .  

The vector field Yt : M ^ TM in Step 1 is complete for each t . Thus there 

exists a unique smooth map r x I ^ M : ( s , t ) ^ Ys ( t ) such that , for 

each t <= I , the curve r ^ M : s ^ Ys ( t ) is the unique solution of the 

differential equation ■§ - Ys ( t ) = Yt ( Ys ( t ) ) with Y0 ( t ) = Y ( t ) . 

These maps Ys satisfies by Step 1 .  □ 

We can now define the derivative of the energy functional E at y 

in the direction of a tangent vector X <= TYQp , q by 

m . Y ) X := d 

E ( Ys ) ,   ( 4 . 1 . 8 )  

s=0 

where s ^ Ys is as in Lemma Similarly , the derivative of the length 

functional L at y in the direction of X <= TYQp , q is defined by 

L ( Ys ) .   

s=0 

To define the functions s ^ E ( ys ) and s ^ L ( ys ) must be differentiable 

at s = 0 . This is true for E but it only holds for L when 7 ( t ) = 0 for all t 

<= I . Second , we must show that the right hand sides of depend only on 

X and not on the choice of {ys}seR . Third , we must verify that dE ( y ) 

: TYQp>q ^ r and dL ( Y ) : Dp>q ^ r are linear maps . This is an 

exercise in first year analysis . A curve y <= ^p , q is is then an extremal 

point of E ( respectively L when 7 ( t ) = 0 for all t ) if and only if dE ( y ) 

= 0 ( respectively dL ( Y ) = 0 ) . Such a curve is also called a critical 

point of E ( respectively L ) .  

Characterization of Geodesics  
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Proof of Theorem The equivalence of ( iii ) and ( iv ) follows directly 

from the equations Vft ( t ) = n ( 7 ( t ) ) ft ( t ) and ker ( n ( y ( t ) ) ) = 

TY ( t ) Mx .  

We prove that ( i ) is equivalent to ( iii ) and ( iv ) . Let X e TYQp , q and 

choose a smooth curve of curves r ^ Qp , q : s ^ satisfying . Then the 

function ( s , t ) ^ |fts ( t ) |2 is smooth and hence 

dE ( Y ) x=dS 

1 fb 

l7s ( t ) | dt |'is ( t ) |2 dt 

s 

s=0 

 / (  

[j ( t ) , X ( t ) ) dt 

= - / ( ft ( t ) , X ( t ) ) dt .  

a 

That ( iii ) implies ( i ) follows directly from this identity . To prove that ( 

i ) im - plies ( iv ) we argue indirectly and assume that there exists a 

point t0 e [0 , 1] such that ft ( t0 ) is not orthogonal to TY ( t0 ) M . Then 

there exists a vec - tor v0 e TY ( t0 ) M such that ( y ( t0 ) , v0 ) > 0 . We 

may assume without loss of generality that a <t0 < b . Then there exists a 

constant e > 0 such that a <t0 — e <t0 + e<b and 

t0 — e<t<t0 + e =^ ( ft ( t ) , n ( q ( t ) ) v0 ) > 0 .  

Now choose a smooth cutoff function ft : I ^ [0 , 1] such that ft ( t ) = 0 

for all t e I with |t —10| > e and ft ( t0 ) = 1 . Define X e TYQp , q by 

X ( t ) := ft ( t ) n ( y ( t ) ) v0 for t e I .  

Then ( ft ( t ) , X ( t ) ) > 0 for all t and ( ft ( t0 ) , X ( t0 ) ) > 0 . Hence 

dE ( y ) X = — f ( ft ( t ) , X ( t ) ) dt < 0 
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a 

and so 7 does not satisfy ( i ) . Thus ( i ) is equivalent to ( iii ) and ( iv ) .  

We prove that ( i ) is equivalent to ( ii ) . Assume first that 7 satisfies ( i ) 

. Then 7 also satisfies ( iv ) and hence 7 ( t ) T TY ( t ) M for all t e I . 

This implies 

1 d 

0 = <7 ( t ) , Y ( t ) ) = - ^ |j ( t ) |2 .  

Hence the function I ^ r : t ^ |7 ( t ) |2 is constant . Choose c > 0 such that 

|7 ( t ) | = c . If c = 0 then 7 ( t ) is constant and so j ( t ) = p = q . If c > 0 

then 

[ |js ( t ) | dt 

s=0 - J a rb g 

|js ( t ) | dt 

s=0 

ds 

= f|Y ( t ) rI ( drs 

= -  / ( Y ( t ) , X ( t ) ) dt 

c J a * ' 

= - dE ( j ) X .  

Thus , in the case c > 0 , 7 is an extremal point of E if and only if it is an 

extremal point of L . Hence ( i ) is equivalent to ( ii ) .  

We prove that ( iii ) is equivalent to ( v ) . Let ( $ , 7 , 7' ) be a 

development of M along M' = rm . Then f ( t ) = $ ( t ) i ( t ) and |$ ( t ) X 

( t ) = $ ( t ) VX ( t ) for all X e Vect ( j ) and all t e I . Take X = - 7 to 

obtain 7' ( t ) = $ ( t ) Vj ( t ) for all t e I . Thus Vj = 0 if and only if 7' = 0 

. This proves Theorem 
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Remark shows that reparametrization by a nundecreasing surjective map 

a : I' ^ I gives rise to map 

Qp , q ( I ) ^ Qp , q ( I' ) : j ^ Y 0 a which preserves the length functional 

, i . e .  

l ( Y 0 a ) = l ( Y )  

for all y e Qp , q ( I ) . Thus the chain rule in infinite dimensions should 

assert that if yoa is an extremal ( i . e . critical ) point of L , then y is an 

extremal point of L . moreover , if a is a diffeomorphism the map y ^ Y ◦ 

a is bijective and should give rise to a bijective correspondence between 

the extremal points of L on Qp , q ( I ) and those on Qp , q ( I' ) . Finally , 

if the tangent vector field j vanishes nowhere , then Y can be 

parametrized by the arclength . This is spelled out in more detail in the 

next exercise .  

Exercise . Let y : I = [a , b] ^ M be a smooth curve such that 

7 ( t ) = 0 

for all t <= I and define 

T := L ( 7 ) = f |^ ( t ) | dt .  

J a 

Prove that there exists a unique diffeomorphism a : [0 , T] ^ I such that 

a ( t' ) = t t' = / |'y ( s ) | ds 

a 

for all t' <= [0 , T] and all t <= [a , b] . Prove that 7' := 7 o a : [0 , T] ^ M 

is parametrized by the arclength , i . e . |Y' ( t' ) | = 1 for all t' <= [0 , T] .  

Prove that 

f b 

dL ( Y ) X = - / ( ^ ( t ) , X ( t ) ) dt , V ( t ) := |^f ( t ) | - 1 7 ( t ) . ( 4 . 1 . 

11 )  

a 
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Hint: See the relevant formula in the proof of Theorem .  

Prove that 7 is an extremal point of L if and only if the curve 7' in part ( i 

) is a geodesic .  

Prove that 7 is an extremal point of L if and only if there exists a 

geodesic 7' : I' ^ M and a diffeomorphism a : I' ^ I such that 7' = 7 o a .  

Next we generalize this exercise to cover the case where 7 is allowed to 

vanish . Recall from Remark that the function s ^ L ( qs ) need not be 

differentiable . As an example consider the case where 7 = 70 is constant 

Exercise . Let 7 : I ^ M be a smooth curve and let X <= TYQp , q ( I ) . 

Choose a smooth curve of curves r ^ Qp , q ( I ) : s ^ Ys that satisfies 

Prove that the one - sided derivatives of the function s ^ L ( ys ) exist at s 

= 0 and satisfy the inequalities 

Exercise . Let ( T , y , y' ) be a development of M along M' . Show that y 

is a geodesic in M if and only if y' is a geodesic in M' .  

Distance 

Assume that M c rn is a connected smooth m - dimensional submanifold 

. Two point p , q e M are of distance \p — q\ apart in the ambient 

Euclidean space rn . In this section we define a distance function which 

is more in - timately tied to M by minimizing the length functional over 

the space of curves in M with fixed endpoints . Thus it may happen that 

two points in M have a very short distance in rn but can only be joined 

by very long curves in M . This leads to the intrinsic distance in M . 

Throughout we denote by I = [0 , 1] the unit interval and , for p , q e M , 

by 

Qp , q := {y : [0 , 1] ^ M \ 7 is smooth and 7 ( 0 ) = p , 7 ( 1 ) = q}  

the space of smooth paths on the unit interval joining p to q . Since M is 

connected the set Qp , q is nonempty for all p , q e M . ( Prove this! )  

Definition . The intrinsic distance between two points p , q e M is 

the real number d ( p , q ) > 0 defined by 

d ( p , q ) := inf L ( 7 ) .  
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~y<=Qp , q 

The inequality d ( p , q ) > 0 holds because each curve has nonnegative 

length and the inequality d ( p , q ) < holds because Qp , q = 0 .  

Remark . Every smooth curve 7 : [0 , 1] ^ rn with endpoints 7 ( 0 ) = p 

and 7 ( 1 ) = q satisfies the inequality 

Thus d ( p , q ) >\p — q\ . For 7 ( t ) := p + t ( q — p ) we have equality 

and hence the straight lines minimize the length among all curves from p 

to q .  

Lemma . The function d : M x M ^ [0 , to ) defines a metric on M: 

If p , q G M satisfy d ( p , q ) = 0 then p = q .  

For all p , q G M we have d ( p , q ) = d ( q , p ) .  

For all p , q , r G M we have d ( p , r ) < d ( p , q ) + d ( q , r ) .  

Proof . By Remark we have d ( p , q ) > |p — q| for all p , q G M and this 

proves part ( i ) . Part ( ii ) follows from the fact that the curve y ( t ) := 7 

( 1 — t ) has the same length as 7 and belongs to Qq , p whenever 7 G 

Hp , q . To prove part ( iii ) fix a constant e > 0 and choose curves 70 G 

Hp , q and 71 G Hq , r such that L ( 7o ) < d ( p , q ) + e and L ( y1 ) < d ( 

q , r ) + e . By Remark 4 . 1 . 3 we may assume without loss of generality 

that 70 ( 1 — t ) = 71 ( t ) = q for t > 0 sufficiently small . Under this 

assumption the curve 

for 0 < t < 1 / 2 , 1 ) ,  

for 1 / 2 <t < 1 

is smooth . Moreover , 7 ( 0 ) = p and 7 ( 1 ) = r and so 7 G Qp , r . Thus 

d ( p , r ) < L ( y ) = L ( y0 ) + L ( y 1 ) < d ( p , q ) + d ( q , r ) + 2e .  

Hence d ( p , r ) < d ( p , q ) + d ( q , r ) + 2e for every e > 0 .  

Remark . It is natural to ask if the infimum in is always attained .  

This is easily seen not to be the case in general . For example , let M 

result from the Euclidean space rm by removing a point p0 . Then the 
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distance d ( p , q ) = |p — q| is equal to the length of the line segment 

from p to q and any other curve from p to q is longer . Hence if p0 is in 

the interior of this line segment the infimum is not attained . We shall 

prove below that the infimum is attained whenever M is complete .  

 

Figure : A geodesic on the 2 - sphere .  

Example Let 

M := S2 = {p e r3 | |p| = 1} 

be the unit sphere in r3 and fix two points p , q e S2 . Then d ( p , q ) is 

the length of the shortest curve on the 2 - sphere connecting p and q . 

Such a curve is a segment on a great circle through p and q and its length 

is 

d ( p , q ) = cos - 1 ( ( p , q ) ) ,   

where ( p , q ) denotes the standard inner product , and we have 

0 < d ( p , q ) < n .  

We now have two topologies on our manifold M c rn , namely the topol - 

ogy determined by the metric d in Lemma and the relative topology 

inherited from rn . The latter is also determined by a distance function , 

namely the extrinsic distance function defined as the restriction of the   

Euclidean distance function on rn to the subset M . We denote it by 

do : M x M ^ [0 , to ) , d0 ( p , q ) := |p — q| .   

A natural question is if these two metrics d and d0 induce the same 

topology on M . In other words is a subset U C M open with respect to 

d0 if and only if it is open with respect to d? Or , equivalently , does a 

sequence pv e M converge to p0 e M with respect to d if and only if it 

converges to p0 with respect to d0? Lemma answers this question in the 

affirmative .  
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Exercise . Prove that every translation of rn and every orthogonal 

transformation preserves the lengths of curves .  

Lemma . For every p0 e M we have 

lim d<M ) =1 .  

p , q—po |p — q| 

Lemma . Let p0 e M and let 00 : U0 ^ Q0 be a coordinate chart onto an 

open subset of rm such that its derivative d^0 ( p0 ) : TPoM ^ rm is an 

orthogonal transformation . Then 

lim d ( p , q ) = 1 PW - mpo |00 ( p ) — <Mq ) | .  

The lemmas imply that the topology M inherits as a subset of rm , the 

topology on M determined by the metric d , and the topology on M 

induced by the local coordinate systems on M are all the same .  

Corollary . For every subset U c M the following are equivalent .  

U is open with respect to the metric d in  

U is open with respect to the metric d0 in  

For every coordinate chart <fo : U0 ^ Q0 of M onto an open sub - set Q0 

c rm the set f0 ( U0 n U ) is an open subset of rm .  

Proof . By Remark we have 

|p - q\ < d ( p , q )   

for all p , q G M . Thus the identity idM : ( M , d ) ^ ( M , d0 ) is 

Lipschitz continuous with Lipschitz constant one and so every d0 - open 

subset of M is d - open . Conversely , let U c M be a d - open subset of M 

and let p0 G U and <= > 0 . Then , by Lemma there exists a constant 5 > 

0 such that all p , q G M with \p — p0\ <5 and \q — p0\ <5 satisfy 

d ( p , q ) < ( 1 + <= ) \p — q\ .  

Since U is d - open , there exists a constant p > 0 such that 

Bp ( p0 , d ) c U .  
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With 

P0 := min{5' r + e} 

this implies BP0 ( p0 , d0 ) c U . Namely , if p G M satisfies 

\p — p0\ < P0 < 5 

then 

d ( p , p0 ) < ( 1 + <= ) \p — p0\ < ( 1 + <= ) P0 < P 

and so p G U . Thus U is d0 - open and this proves that ( i ) is equivalent 

to ( ii ) .  

That ( ii ) implies ( iii ) follows from the fact that each coordinate chart 

<f0 is a homeomorphism . To prove that ( iii ) implies ( i ) , we argue 

indirectly and assume that U is not d - open . Then there exists a 

sequence pv G M \ U that converges to an element p0 G U . Let <f0 : U0 

^ Q0 be a coordinate chart with p0 G U0 . Then limv^^\00 ( pv ) — 00 ( 

p0 ) \ = 0 by Lemma Thus ^0 ( U0 n U ) is not open and so U does not 

satisfy ( iii ) .  □ 

Proof of Lemma Estimate |p — q\ < d ( p , q ) holds for all p , q € M . 

The lemma asserts that , for all po € M and all e > 0 , there exists a do - 

open neighborhood Uo C M of p0 such that all p , q € Uo satisfy 

\p — q\ < d ( p , q ) < ( 1 + e ) \p — q\ .   

Let p0 € M and e > 0 , and define x : rn ^ Tp0M and y : rn ^ Tp0M± by 

x ( p ) :=n ( po ) ( p — po ) , y ( p ) := ( 1 — n ( po ) ) ( p — po ) ,  

where n ( po ) : rn ^ Tp0M denotes the orthogonal projection as usual . 

Then the derivative of the map x\M : M ^ Tp0M at p = po is the iden - 

tity on Tp0M . Hence the Inverse Function Theorem asserts that the map 

x\M : M ^ Tp0M is locally invertible near po . Extending this inverse to a 

smooth map from Tp0 M to rn and composing it with the map y : M ^ 

Tp0 Mx , we obtain a smooth map 

f : Tp0 M ^ Tp0 M^ and an open neighborhood W C rn of po such that 

p € M y ( p ) = f ( x ( p ) )  
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for all p € W Moreover , by definition the map f satisfies 

f ( 0 ) = 0 € Tp0Mx , df ( 0 ) = 0 : Tp0M ^ Tp0Mx Hence there exists a 

constant 5 > 0 such that , for every x € Tp0M , we have 

\x\ < 5 =^ x + f ( x ) € W and ||df ( x ) || = sup \df ( ^ ) a;\ < e .  

o=reTP0 m M 

Uo := {p e M n W ||x ( p ) | <5} .  

Given p , q e U0 let y : [0 , 1] ^ M be the curve whose projection to the x 

- axis is the straight line joining x ( p ) to x ( q ) , i . e .  

x ( Y ( t ) ) = x ( p ) + t ( x ( q ) — x ( p ) ) =: x ( t ) ,  

y ( Y ( t ) ) = f ( x ( y ( t ) ) ) = f ( x ( t ) ) =: y ( t ) .  

Then y ( t ) e U0 for all t e [0 , 1] and 

l ( Y ) = f |x ( t ) + y ( t ) | dt 

Jo 

= / |x ( t ) + df ( x ( t ) ) x ( t ) | dt Jo 

[ l1 + iidf ( x ( t ) ) y ) |x ( t ) | dt oJ 

 ( 1 + e ) / |;x ( t ) | dt 

o 

= ( 1 + e ) |x ( p ) — x ( q ) | 

= ( 1 + e ) |n ( po ) ( p — q ) | 

 ( 1 + e ) |p — q| .  

Hence d ( p , q ) < L ( y ) < ( 1 + e ) |p — q|  

we have 

|d^o ( po ) v| = |v| 
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for all v e Tp0M . Fix a constant e > 0 . Then , by continuity of the 

derivative , there exists a d0 - open neighborhood M0 c M of p0 such that 

for all p e M0 and all v e TpM we have 

 ( 1 — e ) |d0o ( p ) v| < |v| < ( 1 + e ) |d0o ( p ) v| .  

Thus for every curve y : [0 , 1] ^ M0 we have 

 ( 1 — e ) L ( ^o o y ) ) < L ( y ) < ( 1 + e ) L ( ^o ◦ y ) .  

One is tempted to take the infimum over all curves y : [0 , 1] ^ M0 

joining two pints p , q e M0 to obtain the inequality 

 ( 1 — e ) |0o ( p ) — 0o ( q ) | < d ( p , q ) < ( 1 + e ) |0o ( p ) — 0o ( q ) | 

.  

However , we must justify these inequalities by showing that the 

infimum over all curves in Mo agrees with the infimum over all curves in 

M joining the points p and q .  

It suffices to show that the inequalities hold on a smaller heighbor - hood 

M1 c Mo of po . Choose such a smaller neighborhood M1 such that the 

open set 0o ( M1 ) is a convex subset of fio . Then the right inequality in 

follows by taking the curve 7 : [0 , 1] ^ M1 from 7 ( 0 ) = p to 7 ( 1 ) = q 

such that 0o o 7 : [0 , 1] ^ 0o ( M1 ) is a straight line . To prove the left 

inequality we use the fact that M0 is d - open by Lemma . Hence , after 

shrinking M1 if necessary , there exists a constant r > 0 such that 

po e M1 c Br ( po , d ) c B3r ( po , d ) c Mo .  

Then , for p , q e M1 we have d ( p , q ) < 2r while L ( y ) > 4r for any 

curve 7 from p to q which leaves Mo . Hence the distance d ( p , q ) of p , 

q e M1 is the infimum of the lengths L ( y ) over all curves 7 : [0 , 1] ^ 

Mo that join 7 ( 0 ) = p to 7 ( 1 ) = q .  

A next question one might ask is the following . Can we choose a 

coordinate chart 0 : U ^ fi on M with values in an open set fi c rm so that 

the length of each smooth curve 7 : [0 , 1] ^ U is equal to the length of 

the curve c := 0 o 7 : [0 , 1] ^ fi? We examine this question by 

considering the inverse map f := 0 - 1 : fi ^ U . Denote the components of 

x and f ( x ) by 
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x = ( x1 , . . . , xm ) e fi , f ( x ) = ( ^1 ( x ) , . . . , fn ( x ) ) e U .  

Given a smooth curve [0 , 1] ^ fi : t ^ c ( t ) = ( c1 ( t ) , . . . , cm ( t ) ) we 

can write the length of the composition 7 = f o c : [0 , 1] ^ M in the form 

L ( f o c ) = /  

o 

n f d \2 

E ( ddSv ( c ( t ) ) ) dt 

V=1 x 7 

2 

E ( E§a ( c ( t ) ) ci ( t ) l dt 

dx 

v=1 \i=1 

A ^ . . v 

^ ^ <9x* ( c ( t ) ) dxj 

v=1 i , j=1 

^ ( ii ( t ) gij ( c ( t ) ) cj ( t ) dt .  

i , j=1 

Here the functions gij : Q ^ r are defined by 

g« <x ) := E % <x ) Ht - <x ) = ( dX <x ) H <x ) ) . <4 - 2 - 8 )  

V=1 

Thus we have a smooth function g = ( gij ) : Q ^ rmxm with values in the 

positive definite matrices given by g ( x ) = d^ ( x ) Td^ ( x ) such that 

L ( $ o c ) = jf \Jc ( t ) Jg ( c ( t ) ) c ( t ) dt  

for every smooth curve c : [0 , 1] ^ Q . Thus the condition L ( ^ o c ) = L 

( c ) for every such curve is equivalent to 
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gij ( x ) = $ij 

for all x <= Q or , equivalently ,  

d^ ( x ) Td^ ( x ) = H .   

This means that ^ preserves angles and areas . The next example shows 

that for M = S2 it is impossible to find such coordinates .  

Example Consider the manifold M = S2 . If there is a diffeomorphism ^ : 

Q ^ U from an open set Q C r2 onto an open set U C S2 that satisfies it 

has to map straight lines onto arcs of great circles and it preserves the 

area . However , the area A of a spherical triangle bounded by three arcs 

on great circles satisfies the angle sum formula 

a + ft + y = n + A .  

Hence there can be no such map ^ .  

 

5.3 EXPONENTIAL MAP 

Geodesic Spray 

The tangent bundle TM is a smooth 2m - dimensional manifold in rn x rn 

by Corollary . The next lemma characterizes the tangent bundle of the 

tangent bundle .  

Lemma . The tangent space of TM at ( p , v ) € TM  

Proof . We prove the inclusion "c" . Let ( p ) 7 ) € T ( p , v ) TM and 

choose a smooth curve r ^ TM : t ^ ( 7 ( t ) , X ( t ) ) such that 

7 ( 0 ) = p , X ( 0 ) = v , 7 ( 0 ) = p , X ( 0 ) = 7 .  

Then the GauB - Weingarten formula asserts that 

X ( t ) = VX ( t ) + h7W ( y ( t ) , X ( t ) )  

and hence ( H — n ( y ( t ) ) ) X ( t ) = h7 ( t ) ( y ( t ) , X ( t ) ) for all t € 

r . Take t = 0 to obtain ( 1 — n ( p ) ) 7 = hp ( p , v ) . This proves the 
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inclusion "c" in Equality holds because both sides of the equation are 2m 

- dimensional linear subspaces of rn x rn .  □ 

By Lemma a smooth map S = ( Si , S2 ) : TM ^ rn x rn is a vector field 

on TM if and only if 

Si ( p , v ) € TpM , ( 1 — n ( p ) ) S2 ( p , v ) = hp ( Si ( p , v ) , v )  

for all ( p , v ) € TM . A special case is where S1 ( p , v ) = v . Such 

vector fields correspond to second order differential equations on M .  

Definition ( Spray ) . A vector field S € Vect ( TM ) is called a spray if it 

has the form S ( p , v ) = ( v , S2 ( p , v ) ) where S2 : TM ^ rn is a 

smooth map satisfying 

 ( 1 — n ( p ) ) S2 ( p , v ) = hp ( v , v ) , S2 ( p , Av ) = A2S2 ( p , v ) for 

all ( p , v ) € TM and A € r . The vector field S € Vect ( TM ) defined by 

S ( p , v ) := ( v , hp ( v , v ) ) € T ( p , v ) TM for p € M and v € TpM is 

called the geodesic spray .  

 

Exponential Map 

Lemma Let y : I ^ M be a smooth curve on an open interval I C r . Then 

7 is a geodesic if and only if the curve I ^ TM : t ^ ( Y ( t ) , Y ( t ) ) is an 

integral curve of the geodesic spray S .  

Proof . A smooth curve I ^ TM : t ^ ( 7 ( t ) , X ( t ) ) is an integral curve 

of S if and only if 

Y ( t ) = X ( t ) ^ ( t ) = hY ( t ) ( X ( t ) , X ( t ) )  

for all t <= I . By equation , this holds if and only if 7 is a geodesic and Y 

= X .   

Lemma Let M C rn be an m - dimensional submanifold .  

 ( i ) For every p <= M and every v <= TpM there is an e > 0 and a 

smooth 

curve y : ( —e , e ) M such that 



Notes 

129 
 

VY = 0 , y ( 0 ) = p , Y ( 0 ) = v .   

 ( il ) If Yi : Ii ^ M and Y2 : I2 ^ M are geodesics and t0 <= Ii C I2 with 

Yi ( to ) = Y2 ( to ) , - y i ( to ) = Y 2 ( to ) then Yi ( t ) = Y2 ( t ) for all t 

<= Ii C I2 .  

Definition ( Exponential Map ) . For p <= M and v <= TpM the interval 

I  11 Ii r I is an open interval containing 0 and there is a 1 

p , v U* | geodesic y : I ^ M satisfying y ( 0 ) = p , 7 ( 0 ) = v J .  

is called the maximal existence interval for the geodesic through p in the 

direction v . For p <= M define the set Vp C TpM by 

Vp := {v <= TPM | 1 <= IP}V} .  

The exponential map at p is the map 

expp : Vp ^ M 

that assigns to every tangent vector v <= Vp the point expp ( v ) := y ( 1 ) 

, where y : Ip , v ^ M is the unique geodesic satisfying y ( 0 ) = p and Y ( 

0 ) = v .  

Lemma . ( i ) The set 

V := { ( p , v ) | p e M , v e Vp} C TM 

is open and the map V ^ M : ( p , v ) ^ expp ( v ) is smooth .  

 ( ii ) If P e M and v e Vp , then 

Ip , v = {t e r | tv e Vp} 

and the geodesic y : Ip , v ^ M with 7 ( 0 ) = p and 7 ( 0 ) = v is given by 

Y ( t ) = expp ( tv ) , t e Ip , v .  

Proof . Part ( i ) follows directly from Lemma .  

To prove part ( ii ) , fix an element p e M and a tangent vector v e Vp , 

and let 7 : Ip , v ^ M be the unique geodesic with 7 ( 0 ) = p and 7 ( 0 ) = 
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v . Fix a nonzero real number A and define the map Ya : A - 1Ip , v ^ M 

by 

7a ( t ) := 7 ( At ) for t e A - 1Ip , v .  

Then YA ( t ) = AY ( At ) ans YA ( t ) = A2Y ( At ) and hence 

VYA ( t ) = n ( YA ( t ) ) YA ( t ) = A2n ( Y ( At ) ) Y ( At ) = A2Vy ( A 

t ) = 0 

for every t e A - 1Ip , v . This shows that ya is a geodesic with 

Ya ( 0 ) = p , Ya ( 0 ) = Av .  

In particular , we have A - 1Ip , v C Ip , Av . Interchanging the roles of v 

and Av we obtain A - 1Ip , v = Ip , Av . Thus 

A e Ip , v 1 e Ip , Av Av e Vp 

and 

Y ( A ) = Ya ( 1 ) = expp ( Av ) for A e Ip , v .  □ 

Since expp ( 0 ) = p by definition , the derivative of the exponential map 

at v = 0 is a linear map from TpM to itself . This derivative is the identity 

map as illustrated and proved in the following corollary .  

Corollary . The map expp : Vp ^ M is smooth and its derivative at the 

origin is dexpp ( 0 ) = id : TpM ^ TpM .  

Proof . The set Vp is an open subset of the linear subspace TpM c rn , 

with respect to the relative topology , and hence is a manifold . The 

tangent space of Vp at each point is TpM the exponential map expp : Vp 

^ M is smooth and its derivative at the origin is given by 

expp ( tv ) = 7 ( 0 ) = ^ 

t=0 

where 7 : Ipv ^ M is once again the unique geodesic through p in the 

direction v .   

Corollary . Let p <= M and , for r > 0 , denote 
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Br ( p ) := {v <= TpM | |v| < r} .  

If r > 0 is sufficiently small then Br ( p ) c Vp , the set 

Ur ( p ) := expp ( Br ( p ) )  

is an open subset of M , and the restriction of the exponential map to Br ( 

p ) is a diffeomorphism from Br ( p ) to Ur ( p ) .  

Definition ( Injectivity Radius ) . Let M c rn be a smooth mmanifold . 

The injectivity radius of M at p is the supremum of all r > 0 such that the 

restriction of the exponential map expp to Br ( p ) is a diffeomorphism 

onto its image 

Ur ( p ) := expp ( Br ( p ) ) .  

It will be denoted by 

inj ( p ) := inj ( p; M ) := sup < r > 0 

The injectivity radius of M is the infimum of the injectivity radii of M at 

p over all p <= M . It will be denoted by 

inj ( M ) := inf inj ( p; M ) .  

pGM 

Example The exponential map on rm is given by 

expp ( v ) = p + v for p , v <= rm .  

For every p <= rm this map is a diffeomorphism from TpRm = rm to rm 

and hence the injectivity radius of rm is infinity .  

Example The exponential map on Sm is given by 

sin ( |v| )  

expp ( v ) = cos ( |v| ) p +  

for every p <= Sm and every nonzero tangent vector v <= TpSm = p . 

The re - striction of this map to the open ball of radius r in TpM is a 

diffeomorphism onto its image if and only if r < n . Hence the injectivity 

radius of Sm at every point is n . Exercise: Given p <= Sm and 0 = v <= 
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TpSm = p± , prove that the geodesic 7 : r ^ Sm with 7 ( 0 ) = p and 7 ( 0 ) 

= v is given by Y ( t ) = cos ( t |v| ) p + sl"|VjV ) v for t <= r . Show that , 

in the case 0 < |v| < n there is no shorter curve in Sm connecting p and q 

and deduce that the intrinsic distance on Sm is given by d ( p , q ) = cos - 

1 ( ( p , q ) ) for p , q <= Sm  

Example . Consider the orthogonal group O ( n ) C rnxn with the 

standard inner product 

{v , w ) := trace ^vTwj 

on rnxn . The orthogonal projection n ( g ) : rnxn ^ TgO ( n ) is given by 

1 

2 

and the second fundamental form by 

kg ( v , v ) = —gvTv .  

Hence a curve y : r ^ O ( n ) is a geodesic if and only if yt7 + YJY = 0 or 

, equivalently , yTY is constant . This shows that geodesics in O ( n ) 

have the form Y ( t ) = gexp ( t{ ) for g <= O ( n ) and { <= o ( n ) . It 

follows that the exponential map is given by 

expg ( v ) = g exp ( g - 1v ) = exp ( vg - 1 ) g 

for g <= O ( n ) and v <= TgO ( n ) . In particular , for g = H the 

exponential map expj : o ( n ) ^ O ( n ) agrees with the exponential 

matrix .  

Exercise . What is the injectivity radius of the 2 - torus t2 = S1 x S1 , the 

punctured 2 - plane r2 \ { ( 0 , 0 ) } , and the orthogonal group O ( n ) ? 

 

Convex Neighborhoods 

Geodesics in Local Coordinates 

Lemma . Let M c rn be an m - dimensional manifold and choose a 

coordinate chart 0 : U ^ Q with inverse 
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0 := 0 - 1 : Q ^ U .  

Let rk : Q ^ r be the Christoffel symbols defined by and let c : I ^ Q be a 

smooth curve . Then the curve 7 := 0 o c : I ^ M is a geodesic if and only 

if c satisfies the 2nd order differential equation 

m 

ck + <= rj ( c ) cic> = 0  

i , j=1 

for k = 1 , . . . , m .  

Proof . This follows immediately from the definition of Geodesics and 

equation in Lemma with X = 7 and { = c .  □ 

That is based on the existence and uniqueness of solutions of second 

order differential equations in local coordinates .  

Exercise . Let Q c rm be an open set and g = ( gj ) : Q ^ rm*m be a 

smooth map with values in the space of positive definite symmetric 

matrices . Consider the energy functional 

E ( c ) := [ L ( c ( t ) , c ( t ) ) dt J 0 

on the space of paths c : [0 , 1] ^ Q , where L : Q x rm ^ r is defined by 

m 

L ( x , <= ) := - <= Cigij ( x ) e .   

i , j=1 

The Euler—Lagrange equations of this variational problem have the 

form 

d dL . . . . . . dL , , , , , , ,   . .  

Jtd^k ( c ( t ) , c ( t ) ) = djXk ( c ( t ) , c ( t ) ) , k = 1 , . . . , m .  

Prove that the Euler - Lagrange equations are equivalent to the geodesic 

equations , where the rk : Q ^ r are given 
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Check your Progress -  1 

Discuss Geodesics  

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Exponential Map 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

5.4 LET US SUM UP 

In this unit we have discussed the definition and example of Geodesics , 

Exponential Map 

 

5.5 KEYWORDS 

Geodesics ….. This chapter introduces Geodesics in Riemannian 

manifolds 

Exponential Map…… Geodesic Spray..The tangent bundle TM is a 

smooth 2m - dimensional manifold in rn x rn 

 

5.6 QUESTIONS FOR REVIEW 

Explain Geodesics  

Explain Exponential Map 
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5.7 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Geodesics  ( answer for Check your Progress -  1 Q ) 

Exponential Map ( answer for Check your Progress -  1 Q )  

 

5.8 REFERENCE 

 

Differential Geometry, Differential Geometry & Application, 

Introduction to Defferential Geometry, Basic of Differential Geometry. 
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UNIT-VI: CONVEXITY  

STRUCTURE 

6.0 Objectives 

6.1 Introduction  

6.2 Convexity 

6.3 Minimal Geodesics  

6.4 Completeness and Hopf—Rinow 

6.5 Geodesics in the Intrinsic Setting…..Intrinsic Distance 

6.6 Let Us Sum Up 

6.7 Keywords 

6.8 Questions For Review 

6.9 Answers To Check Your Progress 

6.10 References 

6.0 OBJECTIVES 

 

After studying this unit , you should be able to: 

 Understand about Convexity  

 Minimal Geodesics  

 Completeness and Hopf—Rinow 

 Geodesics in the Intrinsic Setting….. Intrinsic Distance 

6.1 INTRODUCTION 

Differential geometry arose and developed as a result of and in 

connection to the mathematical analysis of curves and surfaces 

Mathematical analysis of curves and surfaces had been developed to 

answer some of unanswered questions that appeared in calculus like the 

reasons for relationships between complex shapes and curves , series and 
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analytic functions Convexity , Minimal Geodesics , Completeness and 

Hopf—Rinow, Geodesics in the Intrinsic Setting…..Intrinsic Distance 

6.2 CONVEXITY 

A subset of an affine space is called convex iff it contains the line 

segment joining any two of its points . The definition carries over to a 

submanifold M of Euclidean space ( or indeed more generally to any 

manifold M equipped with a spray ) once we reword the definition so as 

to confront the difficulty that a geodesic joining two points might not 

exist nor , if it does , need it be unique .  

Definition ( Geodesically Convex Sets ) . Let M C rn be a smooth m - 

dimensional manifold . A subset U C M is called geodesically con - vex 

if , for all po , Pi G U , there exists a unique geodesic 7 : [0 , 1] ^ U such 

that 7 ( 0 ) = p0 and 7 ( 1 ) = p1 .  

It is not precluded in Definition that there be other geodesics from p to q 

which leave and then re - enter U , and these may even be shorter than 

the geodesic in U .  

Exercise . ( a ) Find a geodesically convex set U in a manifold M and 

points po , pi G U such that the unique geodesic 7 : [0 , 1] ^ U with 7 ( 0 

) = p0 and 7 ( 1 ) = p1 has length L ( y ) > d ( p0 , p1 ) . Hint: An interval 

of length bigger than n in S1 .  

 ( b ) Find a set U in a manifold M such that any two points in U can be 

connected by a minimal geodesic in U , but U is not geodesically convex 

. Hint: A closed hemisphere in S2 .  

Theorem ( Convex Neighborhoods ) . Let M C rn be a smooth m - 

dimensional submanifold and fix a point p0 G M . Let $ : U ^ Q be any 

coordinate chart on an open neighborhood U C M of p0 with values in an 

open set Q C rm . Then the set 

Ur := {p G U | |$ ( p ) - 0 ( p0 ) | < r} 

is geodesically convex for r > 0 sufficiently small . Corollary Let M C rn 

be a smooth m - manifold and let p0 G M . Then , for r > 0 sufficiently 

small , the open ball 
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Ur ( P0 ) := {p G M | d ( p0 , p ) < r} 

is geodesically convex .  

Proof . Choose an orthonormal basis ei , . . . , em of Tp0 M and define 

Q := {x € rm | \x\ < inj ( p0; M ) } ,  

U := {p € M \ d ( po , p ) < inj ( po; M ) } .  

Define the map f : Q ^ U byf ( x ) := exppo ( E x'eA  

for x = ( x1 , . . . , xm ) € Q . Then f is a diffeomorphism and d ( p0 , f ( x 

) ) = \x\ for all x € Q . Hence its inverse 

f := f - 1 : U ^ Q  

satisfies f ( p0 ) = 0 and \f ( p ) \ = d ( p0 , p ) for all p € U . Thus 

Ur ( po ) = {p € U \ \f ( p ) - f ( po ) \ < r} for 0 < r < inj ( po; M )  

Definition ( Geodesically Normal Coordinates ) . The coordinate chart f : 

U ^ Q in sends Geodesics through p0 to straight lines through the origin . 

Its components x1 , . . . , xm : U ^ r are called geodesically normal 

coordinates at p0 .  

Proof of Theorem . Assume without loss of generality that f ( p0 ) = 0 . 

Let rkj : Q ^ r be the Christoffel symbols of the coordinate chart and , for 

x € Q , define the quadratic function Qx : rm ^ r by 

m ^ m 

 . M xkrfc 

Jj 1 . ij \ 

Qx ( e ) := E ( fk ) - E xkrkj ( x ) eiej .  

k=1 i , j , k=1 

Shrinking U , if necessary , we may assume that 

m 

E xk rkj ( x )  
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< - — for all x G Q .  

2m 

k= 1 

Then , for all x € Q and all f € rm we have 

1 ( m \2 1 

Qx<« f \ 2 - 2m ^ 2 \f \ 2 ^ 0 -  

Hence Qx is positive definite for every x € Q .  

Now let y : [0 , 1] ^ U be a geodesic and define 

c ( t ) := 0 ( y ( t ) )  

for 0 < t < 1 . Then , by Lemma , c satisfies the differential equation 

ck + ^ rj ( c ) cicj = 0 .  

i , j 

Hence 

d2 |c|2 d , . l2 ^ . . |c|2 

dt* IT = dt <c'c> = |c| + <c'c> = Qc ( c ) - "iT - 0 

and so the function t ^ |^ ( Y ( t ) ) |2 is convex . Thus , if y ( 0 ) , Y ( 1 ) 

<= Ur for some r > 0 , it follows that y ( t ) <= Ur for all t <= [0 , 1] .  

Consider the exponential map 

V = { ( p , v ) <= TM | v <= Vp} ^ M : ( p , v ) ^ expp ( v )  

in Lemma . Its domain V is open and the exponential map is smooth . 

Since it sends the pair ( p0 , 0 ) <= V to exppo ( 0 ) = po <= U , it follows 

from con - tinuity that there exist constants e > 0 and r > 0 such that 

p <= Ur , v <= TpM , |v| < e =^ v <= Vp , expp ( v ) <= U .  

Moreover , we have 

d expp0 ( 0 ) = id : TpoM ^ Tpo M 
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Hence the Implicit Function Theorem asserts that the constants e > 0 and 

r > 0 can be chosen such that holds and there exists a smooth map h : Ur 

x Ur ^ rn that satisfies the conditions 

h ( p , q ) <= TpM , |h ( p , q ) | <e  

for all p , q <= Ur and 

expp ( v ) = q v = h ( p , q )   

for all p , q <= Ur and all v <= TpM with |v| < e . In particular , we have 

h ( po , po ) = 0 and expp ( h ( p , q ) ) = q for all p , q <= Ur .  

Fix two constants e > 0 and r > 0 and a smooth map h : Ur x Ur ^ rn are 

satisfied . We show that any two points p , q <= Ur are joined by a 

geodesic in Ur .  

Let p , q <= Ur and define 

Y ( t ) := expp ( th ( p , q ) ) for 0 < t < 1 .  

This curve y : [0 , 1] ^ M is well defined by it is a geodesic satisfying y ( 

0 ) = p <= Ur by Lemma , it satisfies y ( 1 ) = q <= Ur it takes values in 

U by and so y ( [0 , 1] ) C Ur because the function [0 , 1] ^ r : t ^ |^ ( Y ( t 

) ) |2 is convex .  

We show that there exists at most one geodesic in Ur joining p and q . 

Let p , q <= Ur and let y : [0 , 1] ^ Ur be any geodesic such that y ( 0 ) = 

p and y ( 1 ) = q . Define v := Y ( t ) <= TpM . Then y ( t ) = expp ( tv ) 

for 0 < t < 1 by Lemma We claim that |v| < e . Suppose , by contradiction 

, that 

|v| > e .  

Then 

T := ^ < 1 | v| 

and , for 0 < t < T , we have |tv| < e and expp ( tv ) = y ( t ) <= Ur and so 

h ( p , Y ( t ) ) = tv .  

by . Thus 
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|h ( p , Y ( t ) ) | = t|v| for 0 < t < T .  

Take the limit t ^ T to obtain 

|h ( p , y ( T ) ) | = T |v| = e in contradiction . This contradiction shows 

that |v| < e . Since 

expp ( v ) = y ( 1 ) = q <= Ur it follows from that v = h ( p , q ) . This 

proves Theorem□ 

Exercise . Consider the set Ur ( p ) = {q <= M | d ( p , q ) < r} for p <= M 

and r > 0 . Corollary asserts that this set is geodesically convex for r 

sufficiently small . How large can you choose r in the cases 

M = S2 , M = t2 = S1 x S1 , M = r2 , M = r2 \ {0} .  

Compare this with the injectivity radius . If the set Ur ( p ) in these exam 

- ples is geodesically convex , does it follow that every geodesic in Ur ( p 

) is minimizing? 

 

6.3 MINIMAL GEODESICS  

Any straight line segment in Euclidean space is the shortest curve joining 

its endpoints . The analogous assertion for geodesics in a manifold M is 

false; consider for example an arc which is more than half of a great 

circle on a sphere . In this section we consider curves which realize the 

shortest distance between their endpoints .  

Lemma . Let I = [a , b] be a compact interval , let 7 : I ^ M be a smooth 

curve , and define p := 7 ( a ) and q := 7 ( b ) . Then the following are 

equivalent .  

7 is parametrized proportional to the arclength , i . e . |7 ( t ) | = c is 

constant , and y minimizes the length , i . e .  

l ( y ) < l ( y0 

for every smooth curve Y in M joining p and q .  

y minimizes the energy , i . e .  
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E ( y ) < E ( V )  

for every smooth curve Y : I ^ M with y' ( a ) = p and y' ( b ) = q .  

Proof . See page 192 .  □ 

Definition ( Minimal Geodesic ) . A smooth curve y : I ^ M on 

a compact interval I C r is called a minimal geodesic if it satisfies the 

equivalent conditions of Lemma 

Remark . ( i ) Condition ( i ) says that ( the velocity |Y| is constant and ) 

L ( y ) = d ( p , q ) , i . e . that y is a shortest curve from p to q . It is not 

precluded that there be more than one such y; consider for example the 

case where M is a sphere and p and q are antipodal .  

 ( ii ) Condition ( ii ) implies that 

e ( Y s ) = 0 

s=0 

for every smooth variation r x I ^ M : s ^ Ys ( t ) of Y with fixed 

endpoints . Hence a minimal geodesic is a geodesic .  

 ( iii ) Finally , we remark that L ( y ) ( but not E ( y ) ) is independent of 

the parametrization of y . Hence if y is a minimal geodesic L ( y ) < L ( y' 

) for every y' ( from p to q ) whereas E ( y ) < E ( y' ) for those Y defined 

on ( an interval the same length as ) I .  

Proof of Lemma . We prove that ( i ) implies ( ii ) . Let ( c ) be the ( con - 

stant ) value of |7 ( t ) | . Then 

l ( y ) = ( b - a ) c e ( y ) = ( b 2° ) c .  

Then , for every smooth curve 7' : I ^ M with 7' ( a ) = p and 7' ( b ) = q , 

we have 

4E ( 7 ) 2 = c2l ( 7 ) 2 

c2l ( 7' ) 2 

= c2 ( I '^' ( t ) ' dt )  
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 / "b 

c2 ( b - a ) '7 / ( t )  

J a 

= 2 ( b — a ) c2E ( 7' )  

= 4E ( 7 ) E ( 7' ) .  

Here the fourth step follows from the Cauchy - Schwarz inequality . Now 

divide by 4E ( 7 ) to obtain E ( 7 ) < E ( 7' ) .  

We prove that ( ii ) implies ( i ) . We have already shown in Remark that 

( ii ) implies that 7 is a geodesic . It is easy to dispose of the case where 

M is one - dimensional . In that case any 7 minimizing E ( 7 ) or L ( 7 ) 

must be monotonic onto a subarc; otherwise it could be altered so as to 

make the integral smaller . Hence suppose M is of dimension at least two 

. Suppose , by contradiction , that L ( 7' ) < L ( 7 ) for some curve 7' from 

p to q . Since the dimension of M is bigger than one , we may 

approximate 7' by a curve whose tangent vector nowhere vanishes , i . e . 

we may assume without loss of generality that 7' ( t ) = 0 for all t . Then 

we can reparametrize 7' proportional to arclength without changing its 

length , and by a further transformation we can make its domain equal to 

I . Thus we may assume without loss of generality that 7' : I ^ M is a 

smooth curve with 7' ( a ) = p and 7' ( b ) = q such that |7' ( t ) | = c' and 

 ( b — a ) c' = L ( 7' ) < L ( 7 ) = ( b — a ) c .  

This implies c' < c and hence 

e ( y / ) = <Y—aT < TWd = e ( 7 ) .  

This contradicts ( ii ) and proves Lemma 

The next theorem asserts the existence of minimal Geodesics .  

Theorem ( Existence of Minimal Geodesics ) . Let M C rn be a 

smooth m - manifold , fix a point p e M , and let r > 0 be smaller than the 

injectivity radius of M at p . Let v e TpM such that |v| < r . Then 

d ( p , q ) = |v| , q :=expp ( v ) ,  
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and a curve y e Qp , q has minimal length L ( 7 ) = |v| if and only if there 

is a smooth map ft : [0 , 1] ^ [0 , 1] satisfying 

<= ( 0 ) = 0 , ft ( 1 ) = 1 , ft > 0 

such that y ( t ) = expp ( ft ( t ) v ) for 0 < t < 1 .  

Ur 

Lemma ( Gaufi Lemma ) . Let M , p , r be as in Theorem let I C r be an 

open interval , and let w : I ^ Vp be a smooth curve whose norm  

Proof of Lemma . For every t e I we have 

a ( 0 , t ) = expp ( 0 ) = p and so the assertion holds for s = 0 , i . e .  

da . . da , . ,  

as ( M ) 'aS ( 0 - ( h=0 .  

Moreover , each curve s ^ a ( s , t ) is a geodesic , i . e .  

^ da rr , . d2a 

v>dS = n ( a ) s 0 .  

By Theorem the function 

da ,  

ds ( s - t )  

is constant for every t , so that 

= |w ( t ) | = r for ( s , t ) e r x I .  

This implies 

da da\ Ida da s ds ' dt / + \ ds , s dt 

da TT , , d2a \ 

as'n ( a ) aiat /  

 / da d2a \ 

 ( n ( a ) as - asa )  
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da  

d2a \ ds' dsdt / d_ 

dt 0 .  

Since the function ( , d ) vanishes for s = 0 we obtain 

da . . da . . ,  

ds  ( M ) > =  

for all s and t . This proves Lemma Proof of Theorem 4 . 5 . 4 . Let r > 0 

be as in Corollary and let v e TpM such that 0 < |v| =: e < r . Denote q := 

expp ( v ) and let 7 e Qp , q . Assume first that 

Y ( t ) e expp {Be ( p ) ) = Us V t e [0 , 1] .  

Then there is a unique smooth function [0 , 1] ^ TpM : t ^ v ( t ) such that 

|v ( t ) | < e and q ( t ) = expp ( v ( t ) ) for every t . The set 

I := {t e [0 , 1] 1 Y ( t ) = p} = {t e [0 , 1] 1 v ( t ) = 0} C ( 0 , 1] 

is open in the relative topology of ( 0 , 1] . Thus I is a union of open 

intervals in ( 0 , 1 ) and one half open interval containing 1 . Define P : [0 

, 1] ^ [0 , 1] and w : I ^ TpM by 

|v ( t ) | 

w ( t ) := e 

e  - - |v ( t ) |" 

Then P is continuous , both P and w are smooth on I ,  

P ( 0 ) = 0 , P ( 1 ) = 1 , w ( 1 ) = v ,  

and 

|w ( t ) | = e , y ( t ) = expp ( P ( t ) w ( t ) )  

for all t e I . We prove that L ( y ) > e . To see this let a : [0 , 1] x I ^ M 

be the map of Lemma , i . e .  

a ( s , t ) := expp ( sw ( t ) ) .  
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Then Y ( t ) = a ( P ( t ) , t ) and hence 

^ ( t ) =P ( t ) d? ( P ( t ) , t ) + fff ( P ( t ) , t )  

for every t > 0 . Hence it follows from Lemma that 

for every t e I . Hence 

L ( y ) = [ |Y ( t ) | dt = / |'y ( t ) | dt > e / P ( t ) dt > e / P ( t ) dt = e . do

 JI JI Ji 

Here the last equation follows by applying the fundamental theorem of 

cal - culus to each interval in I and using the fact that ft ( 0 ) = 0 and ft ( 1 

) = 1 . If L ( y ) = e we must have 

o 

 ( ft ( t ) , t ) = 0 , ft ( t ) > 0 for all t g I .  

Thus I is a single half open interval containing 1 and on this interval the 

condition |a ( ft ( t ) , t ) = 0 implies W ( t ) = 0 . Since w ( 1 ) = v we 

have w ( t ) = v for every t g I . Hence y ( t ) = expp ( ft ( t ) v ) for every 

t g [0 , 1] . It follows that ft is smooth on the closed interval [0 , 1] ( and 

not just on I ) . Thus we have proved that every 7 g Hp , q with values in 

U<= has length L ( 7 ) > e with equality if and only if 7 is a 

reparametrized geodesic . But if 7 g Hp , q does not take values only in 

U<= , there must be a T G ( 0 , 1 ) such that y ( [0 , T] ) c U<= and y ( T 

) g dU<= . Then L ( y|[o , T] ) > e , by what we have just proved , and L ( 

y|[t1] ) > 0 because the restriction of 7 to [T , 1] cannot be constant; so in 

this case we have L ( y ) > e . □ 

The next corollary gives a partial answer to our problem of finding 

length minimizing curves . It asserts that geodesics minimize the length 

locally .  

Corollary . Let M C rn be a smooth m - manifold , let I C r be an open 

interval , and let 7 : I ^ M be a geodesic . Fix a point t0 G I . Then there 

exists a constant e > 0 such that 

to - e < s <t < to + e =^ L ( y|m ) = d ( Y ( s ) , Y ( t ) ) .  
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Proof . Since 7 is a geodesic its derivative has constant norm |ft ( t ) | = c 

Choose 5 > 0 so small that the interval [t0 — 5 , t0 + 5] is contained in I . 

Then there is a constant r > 0 such that r < inj ( q ( t ) ) whenever |t — t0| 

< 5 . Choose e > 0 such that 

e < 5 , 2ec < r .  

If t0 — e<s<t<t0 + e then 

Y ( t ) = exp7 ( s ) ( ( t — s ) Y ( s ) )  

and 

| ( t — s ) 'y ( s ) | = |t — s| c < 2ec < r < inj ( Y ( s ) ) .  

Hence it follows from Theorem that 

l ( YIm ) = |t — s| c = d ( Y ( s ) , Y ( t ) ) .  

This proves Corollary  

Exercise How large can the constant e in Corollary be chosen in the case 

M = S2? Compare this with the injectivity radius .  

Remark . We conclude from Theorem that 

Sr ( p ) := {q e M | d ( p , q ) = r} = expp ( {v e TpM | |v| = r} ) ( 4 . 5 . 1 )  

for 0 < r < inj ( p; M ) . The GauB Lemma shows that the geodesic rays 

[0 , 1] ^ M : s ^ expp ( sv ) emanating from p are the orthogonal tra - 

jectories to the concentric spheres Sr ( p ) .  

Exercise . Let 

M C r3 

be of dimension two and suppose that M is invariant under the ( 

orthogonal ) reflection about some plane E C r3 . Show that E intersects 

M in a geodesic . ( Hint: Otherwise there would be points p , q e M very 

close to one an - other joined by two distinct minimal geodesics . ) 

Conclude for example that the coordinate planes intersect the ellipsoid ( 

x / a ) 2 + ( y / b ) 2 + ( z / c ) 2 = 1 in geodesics .  

Exercise . Choose geodesic normal coordinates near p e M via 
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where ei , . . . , em is an orthonormal basis of TpM . Then we have xl ( p 

) = 0 and 

for 0 < r < inj ( p; M ) . Hence Theorem asserts that Br ( p ) is convex for 

r > 0 sufficiently small .  

Show that it can happen that a geodesic in Br ( p ) is not minimal . Hint: 

Take M to be the hemisphere { ( x , y , z ) e r3 | x2 + y2 + z2 = 1 , z > 0} 

to - gether with the disc { ( x , y , z ) e r3 | x2 + y2 < 1 , z = 0} , but 

smooth the corners along the circle x2 + y2 = 1 , z = 0 . Take p = ( 0 , 0 , 

1 ) and r = n / 2 .  

Show that , if r > 0 is sufficiently small , then the unique geodesic 7 in Br 

( p ) joining two points q , q' e Br ( p ) is minimal and that in fact any 

curve y' from q to q' which is not a reparametrization of 7 is strictly 

longer , i . e . L ( y' ) > L ( y ) = d ( q , q' ) .  

Exercise . Let 7 : I = [a , b] ^ M be a smooth curve with end - points y ( a 

) = p and 7 ( b ) = q and nowhere vanishing derivative , i . e . 7 ( t ) = 0 

for all t <= I . Prove that the following are equivalent .  

 ( i ) The curve 7 is an extremal of the length functional , i . e . every 

smooth map r x I ^ M : ( s , t ) ^ 7s ( t ) with 7s ( a ) = p and 7s ( b ) = q 

for 

all s satisfies  .  

d 

= 0 .  

s=0 

The curve 7 is a reparametrized geodesic , i . e . there exists a smooth 

map a : [a , b] ^ [0 , 1] with a ( a ) = 0 , a ( b ) = 1 , a ( t ) > 0 for all t <= I 

, and a vector v <= TpM such that 

q = expp ( v ) 7 ( t ) = expp ( a ( t ) v )  

for all t <= I . ( We remark that the hypothesis 7 ( t ) = 0 implies that a is 

actually a diffeomorphism , i . e . a ( t ) > 0 for all t <= I . )  
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The curve y minimizes the length functional locally , i . e . there exists an 

e > 0 such that L ( 7|[s , t] ) = d ( 7 ( s ) , 7 ( t ) ) for every closed 

subinterval [s , t] C I of length t — s < e .  

It is often convenient to consider curves 7 where 7 ( t ) is allowed to 

vanish for some values of t; then 7 cannot ( in general ) be parametrized 

by arclength . Such a curve 7 : I ^ M can be smooth ( as a map ) and yet 

its image may have corners ( where 7 necessarily vanishes ) . Note that a 

curve with corners can never minimize the distance , even locally .  

Exercise . The assumption that 7 is nowhere vanishing . Deduce that , if 

y : I ^ M is a shortest curve joining p to q , i . e . L ( y ) = d ( p , q ) , then 

y is a reparametrized geodesic .  

Show by example that one can have a variation ( 7s}seR of a reparame - 

trized geodesic y0 = 7 for which the map s ^ L ( ys ) is not even 

differentiable at s = 0 .  

Show , however , that conditions remain equivalent if the hypothesis that 

7 is nowhere vanishing is weakened to the hypothesis that 7 ( t ) = 0 for 

all but finitely many t <= I . Conclude that a broken geodesic is a 

reparametrized geodesic if and only if it minimizes arclength locally . ( A 

broken geodesic is a continuous map 7 : I = [a , b] ^ M for which there 

exist a = t0 < ti < ■ ■ ■ < tn = b such that 7\[ti - 1 , ti] is a geodesic for i 

= 1 , . . . , n . It is thus a geodesic if and only if 7 is continuous at the 

break points , i . e . 7 ( t - ) = 7 ( t + ) for i = 1 , . . . , n — 1 . )  

6.4 COMPLETENESS AND HOPF—

RINOW 

For a Riemannian manifold there are different notions of completeness . 

First , in completeness was defined in terms of the completeness of time 

dependent basic vector fields on the frame bundle Second there is a 

distance function 

d : M x M ^ [0 , to )  

defined by equation so that we can speak of completeness of the metric 

space ( M , d ) in the sense that every Cauchy sequence converges . Third 
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, there is the question of whether geodesics through any point in any 

direction exist for all time; if so we call a Riemannian manifold 

geodesically complete . The remarkable fact is that these three rather 

different notions of completeness are actually equivalent and that , in the 

complete case , any two points in M can be joined by a shortest geodesic 

. This is the content of the Hopf - Rinow theorem . We will spell out the 

details of the proof for embedded manifolds and leave it to the reader ( as 

a straight forward exercise ) to extend the proof to the intrinsic setting .  

Definition Let M c rn be an m - dimensional manifold . Given a point p 

<= M we say that M is geodesically complete at p if , for every tangent 

vector v <= TpM , there exists a geodesic 7 : r ^ M ( on the entire real 

axis ) satisfying 7 ( 0 ) = p and 7 ( 0 ) = v ( or equivalently Vp = TpM 

where Vp c TpM is defined ) . The manifold M is called geodesically 

complete if it is geodesically complete at every point p <= M .  

Definition . Let ( M , d ) be a metric space . A subset A c M is called 

bounded if 

sup d ( p , p0 ) < to 

peA 

for some ( and hence every ) point p0 <= M .  

Example A manifold M c rn can be contained in a bounded subset of rn 

and still not be bounded with respect to the metric . An example is the 1 - 

manifold 

M = { ( x , y ) <= r2 | 0 < x < 1 , y = sin ( 1 / x ) } .  

Exercise . Let ( M , d ) be a metric space . Prove that every compact 

subset K c M is closed and bounded . Find an example of a metric space 

that contains a closed and bounded subset that is not compact .  

Theorem ( Completeness ) . Let M C rn be a connected m - dimensional 

manifold and let d : M x M ^ [0 , to ) be the distance function defined 

Then the following are equivalent .  

M is geodesically complete .  



Notes 

151 
 

There exists a point p e M such that M is geodesically complete at p .  

Every closed and bounded subset of M is compact .  

 ( M , d ) is a complete metric space .  

M is complete , i . e . for every smooth curve f : r ^ rm and every ele - 

ment ( po , eo ) e F ( M ) there exists a smooth curve ft : r ^ F ( M ) 

satisfying 

ft ( t ) = Bm ( P ( t ) ) , ft ( 0 ) = ( Po , eo ) .   

The basic vector field Bg e Vect ( F ( M ) ) is complete for every f e rm .  

For every smooth curve Y : r ^ rm , every p0 e M , and every or - 

thogonal isomorphism $0 : Tp0M ^ rm there exists a development ( $ , 7 

, 7' ) of M along rm on all of r that satisfies 7 ( 0 ) = p0 and $ ( 0 ) = $0 

Theorem ( Hopf—Rinow ) . Let M C rn be a connected m - manifold and 

let p e M . Assume M is geodesically complete at p . Then , for ev - ery q 

e M , there exists a geodesic 7 : [0 , 1] ^ M such that 

7 ( 0 ) = p , 7 ( 1 ) = q , L ( y ) = d ( p , q ) .  

We prove that ( ii ) implies ( iii ) . Thus assume that M is geodesically 

complete at the point p0 e M and let K C M be a closed and bounded 

subset . Then r := supqeKd ( p0 , q ) < to . Hence Theorem asserts that , 

for every q e K , there exists a vector v e Tp0M such that |v| = d ( p0 , q ) 

< r and expp0 ( v ) = q . Thus 

K C expp0 ( Br ( p0 ) ) , Br ( p0 ) = {v e TPoM | |v| < r} .  

Then B := {v e TP0M | |v| < r , exppo ( v ) e K} is a closed and bounded 

sub - set of the Euclidean space TPoM . Hence B is compact and K = 

exppo ( B ) . Since the exponential map exppo : TP0 M ^ M is 

continuous it follows that K is compact . This shows that ( ii ) implies ( 

iii ) .  

We prove that ( iii ) implies ( iv ) . Thus assume that every closed and 

bounded subset of M is compact and choose a Cauchy sequence pi e M . 

Choose io e n such that d ( pi , pj ) < 1 for all i , j e n with i , j > io . 

Define 
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c := max d ( »i , pi ) + 1 .  

1<i<io 

Then d ( pi , pi ) < d ( pi , pi0 ) + d ( pi0 , pi ) < d ( pi , pi0 ) + 1 < c for 

all i > io and so d ( p1 , pi ) < c for all i e n . Hence the set {pi | i e n} is 

bounded and so is its closure . By ( iii ) this implies that the sequence pi 

has a convergent subsequence . Since pi is a Cauchy sequence , this 

implies that pi converges . Thus we have proved that ( iii ) implies ( iv ) .  

We prove that ( iv ) implies ( v ) . Fix a smooth curve <= : r ^ rm and an 

element ( p0 , e0 ) e F ( M ) . Assume , by contradiction , that there exists 

a real number T > 0 such that there exists a solution ft : [0 , T ) ^ F ( M ) 

of equation that cannot be extended to the interval [0 , T + e ) for any e > 

0 . Write ft ( t ) =: ( 7 ( t ) , e ( t ) ) so that 7 and e satisfy the equations 

7 ( t ) = e ( t ) <= ( t ) e ( t ) = hY ( t ) ( , T ( t ) ) e ( t ) , 7 ( 0 ) = Po , e ( 0 

) = eo .  

This implies e ( t ) n e TY ( t ) M and e ( t ) n e T^M for all n e rm and 

therefore dd 

s ( n . e ( t ) Te ( 00 = dt ( e ( On . e ( t ) C ) = ( e ( t ) n . e ( t ) ( ) + ( e ( f 

) n . e ( t ) 0 = 0 

for all n , Z e rm and all t e [0 , T ) . Thus the function t ^ e ( t ) Te ( t ) is 

con - stant , hence 

e ( t ) Te ( t ) = e ( [eo , ||e ( t ) y = sup = ||eoH  

o=n^Rm |n| 

for 0 < t < T , hence 

|Y ( t ) | = le ( t ) <= ( t ) l < |eoH l<= ( t ) l < |eoH sup l<= ( s ) l =: cT 

o <s<T 

and so d ( q ( s ) , 7 ( t ) ) < L ( y|[s , t] ) < ( t — s ) cT for 0 < s < t < T . 

Since ( M , d ) is a complete metric space , this shows that the limit p1 := 

limt^T q ( t ) e M exists . Thus the set K := 7 ( [0 , T ) ) U {p1} C M is 

compact and so is the set 
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K :^ ( p , e ) e F ( M ) | p e K , eTe = eTe^ C F ( M ) .  

By equation ( 4 . 6 . 2 ) the curve [0 , T ) ^ r x F ( M ) : t ^ ( t , 7 ( t ) , e ( 

t ) ) takes values in the compact set [0 , T] x K and is the integral curve 

of a vector field on the manifold r x F ( M ) . Hence Corollary asserts that 

[0 , T ) cannot be the maximal existence interval of this integral curve , a 

contradiction . This shows that ( iv ) implies ( v ) .  

That ( v ) implies ( vi ) follows by taking <= ( t ) = <= in ( v ) .  

We prove that ( vi ) implies ( i ) . Fix an element p0 <= M and a tan - 

gent vector v0 <= Tp0M . Let eo <= Liso ( rm , Tp0M ) be any 

isomorphism and choose <= <= rm such that e0<= = v0 . By ( vi ) the 

vector field Bg has a unique integral curve r ^ F ( M ) : t ^ P ( t ) = ( j ( t ) 

, e ( t ) ) with 

<= ( 0 ) = ( po , eo ) .  

Thus 

7 ( t ) = e ( t ) <= e ( t ) = hY ( t ) ( e ( t ) <= ) e ( t ) ,  

and hence 

7 ( t ) = e ( t ) <= = hY ( t ) ( e ( t ) <= ) e ( t ) <= = hY« ( 7 ( t ) , 7 ( t ) ) .  

By the Gaufi - Weingarten formula , this implies Vy ( t ) = 0 for every t 

and hence 7 : r ^ M is a geodesic with 7 ( 0 ) = p0 and 7 ( 0 ) = e0<= = v0 

. Thus M is geodesically complete and this shows that ( vi ) implies ( i ) .  

Lemma . Let M c rn be a connected m - manifold and p <= M . Sup - 

pose e > 0 is smaller than the injectivity radius of M at p and denote 

<=i ( p ) := {v <= TPM | |v| = 1} , S<= ( p ) := {p' <= M | d ( p , p' ) = e} .  

Then the map S1 ( p ) ^ S<= ( p ) : v ^ expp ( ev ) is a diffeomorphism 

and , for all q <= M , we have 

d ( p , q ) > e =^ d ( S<= ( p ) , q ) = d ( p , q ) - e .  

Proof . By Theorem we have 

d ( p , expp ( v ) ) = |v| for all v <= TpM with |v| < e 
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and 

d ( p , p' ) > e for all p' <= M \ {expp ( v ) | v <= TpM , |v| < e} .  

This shows that S<= ( p ) = expp ( eS1 ( p ) ) and , since e is smaller than 

the injec - tivity radius , the map 

Si ( p ) ^ S<= ( p ) : v ^ expp ( ev )  

is a diffeomorphism .  

To prove the second assertion , let q e M such that 

r := d ( p , q ) > e .  

Fix a constant 5 > 0 and choose a smooth curve 7 : [0 , 1] ^ M such that 

7 ( 0 ) = p , 7 ( 1 ) = q , l ( y ) < r + 5 .  

Choose to > 0 such that 7 ( to ) is the last point of the curve on S<= ( p ) , 

i . e . Y ( to ) e S<= ( p ) , 7 ( t ) e S<= ( p ) for to < t < 1 .  

Then 

d ( 7 ( to ) , q ) < l ( 7l[to , i] )  

= l ( 7 ) - l ( 7|[o , to] )  

l ( 7 ) - e 

r + 5 — e .  

This shows that d ( S<= ( p ) , q ) < r + 5 — e for every 5 > 0 and 

therefore 

d ( S<= ( p ) , q ) < r — e .  

Moreover ,  

d ( p' , q ) > d ( p , q ) — d ( p , p' ) = r — e for all p' e S<= ( p ) . Thus 

d ( S<= ( p ) , q ) = r — e 

and this proves Lemma 
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Lemma ( Curve Shortening Lemma ) . Let M C rn be an m - mani - fold , 

let p e M , and let e be a real number such that 

0 < e < inj ( p; M ) .  

Then , for all v , w e TpM , we have 

|v| = |w| = e , d ( expp ( v ) , expp ( w ) ) = 2e =^ v + w = 0 .  

Two unit tangent vectors .  

Proof . We will prove that , for all v , w e TpM , we have 

d ( expp ( 5v ) , expp ( 5w ) )  

= |v — w| .  

5 

Assume this holds and suppose , by contradiction , that there exist two 

tangent vectors v , w e TpM such that 

|v| = |w| = 1 , d ( expp ( ev ) , expp ( ew ) ) = 2e , v + w = 0 .  

Then 

|v — w| < 2 

there exists a constant 0 < 5 < e such that 

d ( expp ( 5v ) , expp ( 5w ) ) < 25 .  

Then 

d ( expp ( ev ) , expp ( ew ) )  

< d ( expp ( ev ) , expp ( 5v ) ) + d ( expp ( 5v ) , expp ( 5w ) ) + d ( expp 

( 5w ) , expp ( ew ) ) <e — 5 + 25 + e — 5 = 2e 

and this contradicts our assumption .  

we observe that 

d ( expp ( 5v ) , expp ( 5w ) )  

lim p   p  



Notes 

156 
 

5^0 5 

d ( expp ( 5v ) , expp ( 5w ) ) |expp ( 5v ) — expp ( 5w ) | 

= lim i      +     

   

5^0 |expp ( 5v ) — expp ( 5w ) | 5 

|expp ( 5v ) — expp ( 5w ) 1 

= lim J  -     -  L 

5^0 5 

expp ( 5v ) — p expp ( 5w ) — p 

lim 

50 

= |v — w| .  

Here the second equality  

Proof of Theorem . By assumption M C rn is a connected submani - fold 

, and p e M is given such that the exponential map expp : TpM ^ M is 

defined on the entire tangent space at p . Fix a point q e M \ {p} so that 

0 < r := d ( p , q ) < <xi .  

Choose a constant e > 0 smaller than the injectivity radius of M at p and 

smaller than r . Then , by Lemma , we have 

d ( S<= ( p ) , q ) = r - e .  

Hence there exists a tangent vector v e TpM such that 

d ( expp ( ev ) , q ) = r — e , |v| = 1 .  

Define the curve 7 : [0 , r] ^ M by 

Y ( t ) := expp ( tv ) for 0 < t < r .  



Notes 

157 
 

By Lemma , this is a geodesic and it satisfies y ( 0 ) = p . We must prove 

that y ( r ) = q and L ( y ) = d ( p , q ) . Instead we will prove the follow - 

ing stronger statement .  

Claim . For every t e [0 , r] we have 

d ( y ( t ) , q ) = r — t .  

In particular , y ( r ) = q and L ( y ) = r = d ( p , q ) .  

Consider the subset 

I := {t e [0 , r] | d ( Y ( t ) , q ) = r — t} C [0 , r] .  

This set is nonempty , because e e I , it is obviously closed , and 

t e I =^ [0 , t] C I .   

Namely , if t e I and 0 < s < t then 

d ( Y ( s ) , q ) < d ( Y ( s ) , Y ( t ) ) + d ( Y ( t ) , q ) < t — s + r — t = r 

— s 

and 

d ( Y ( s ) , q ) > d ( p , q ) — d ( p , y ( s ) ) > r — s .  

Hence d ( Y ( s ) , q ) = r — s and hence s e I .  

We prove that I is open ( in the relative topology of [0 , r] ) . Let t e I be 

given with t < r . Choose a constant e > 0 smaller than the injectivity 

radius of M at 7 ( t ) and smaller than r — t . Then , by Lemma with p 

replaced by 7 ( t ) , we have 

d ( S<= ( i ( t ) ) , q ) = r — t — e .  

Next we choose w e TY ( t ) M such that 

|w| = 1 , d ( expY ( t ) ( ew ) , q ) = r — t — e .  

Then 

d ( Y ( t — e ) , exp7 ( t ) ( ew ) ) > d ( Y ( t — e ) , q ) — d ( exp7W ( 

ew ) , q )  
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= ( r — t + e ) — ( r — t — e )  

= 2e .  

The converse inequality is obvious , because both points have distance e 

to 7 ( t )  

The proof of the Hopf - Rinow theorem .  

Thus we have proved that 

d ( Y ( t — e ) , exp7 ( t ) ( ew ) ) = 2e .  

Since 

Y ( t — e ) =exp7 ( t ) ( —e^ ( t ) ) ,  

it follows from Lemma that 

w = Y ( t ) .  

Hence expY ( t ) ( sw ) = Y ( t + s ) and this implies that 

d ( Y ( t + e ) , q ) = r — t — e .  

Thus t + e e I and , by ( 4 . 6 . 4 ) , we have [0 , t + e] e I . Thus we have 

proved that I is open . In other words , I is a nonempty subset of [0 , r] 

which is both open and closed , and hence I = [0 , r] .  

6.5 GEODESICS IN THE INTRINSIC 

SETTING…..INTRINSIC DISTANCE 

Let M be a connected smooth manifold equipped with a Riemannian 

metric Then we can define the length of a curve 7 : [0 , 1] ^ M by the 

formula and it is invariant under reparametrization as in Remark The 

distance function d : M x M ^ r is then given by the same formula We 

prove that it still defines a metric on M and that this metric induces the 

same topology as the smooth STRUCTURE .  

Lemma Let M be a connected smooth Riemannian manifold and define 

the function d : M x M ^ [0 , to ) Then d is a metric and induces the same 

topology as the smooth STRUCTURE .  
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Proof . The proof has three steps .  

Step 1 . Fix a point p0 E M and let $ : U ^ Q be a coordinate chart of M 

onto an open subset Q C rm such that p0 E U . Then there exists an open 

neighborhood V C U of p0 and constants S , r > 0 such that 

5 |$ ( p ) - 0 ( po ) | < d ( p , po ) < 5 - 1 |$ ( p ) - 0 ( po ) |  ( 4 . 7 . 1 )  

for every p E V and d ( p , p0 ) > 5r for every p E M \ V .  

Denote the inverse of the coordinate chart $ by ^ := $ - 1 : Q ^ M and 

define the map g = ( gj ) ™=i : Q ^ rmxm by gj ( x ) := ( JX ( x ) , Jj ( x ) 

) ^ ) for x E Q . Then a smooth curve 7 : [0 , 1] ^ U has the length 

l ( Y ) = J Vc ( t ) Tg ( c ( t ) ) c ( t ) d^ , c ( t ) := $ ( Y ( t ) ) .  

Let x0 := $ ( p0 ) E Q and choose r > 0 such that Br ( x0 ) C Q . Then 

there is a constant 5 E ( 0 , 1] such that 

5 |<=|< V^Tg ( x ) C < 5 - 1 |<=|  

for all x E Br ( x0 ) and <= , g E rm . Define V := $ - 1 ( Br ( x0 ) ) C U .  

Now let p E V and denote x := $ ( p ) E Br ( x0 ) . Then , for every 

smooth curve 7 : [0 , 1] ^ V with 7 ( 0 ) = p0 and 7 ( 1 ) = p , the curve c 

:= $ o 7 takes values in Br ( x0 ) and satisfies c ( 0 ) = x0 and c ( 1 ) = x 

L ( y ) > 5 f |C ( t ) | dt > 5 f c ( t ) dt J 0 J 0 

If y : [0 , 1] ^ M is a smooth curve with endpoints y ( 0 ) = p0 and y ( 1 ) 

= p whose image is not entirely contained in V then there is a time T e ( 0 

, 1] such that y ( t ) e V for 0 < t <T and y ( T ) e dV . Hence c ( t ) := 0 ( 

y ( t ) ) e Br ( x0 ) for 0 < t < T and |c ( T ) — x0\ = r . Hence , by the 

above argument , we have 

L ( y ) > 5r .  

This shows that d ( p0 , p ) > 5r for p e M \ V and d ( p0 , p ) > 5 \0 ( p ) 

— 0 ( p0 ) \ for p e V . If p e V , x := 0 ( p ) , and c ( t ) := x0 + t ( x — 

x0 ) then y := 0 ° c is a smooth curve in V with y ( 0 ) = p0 and y ( 1 ) = p  

This proves Step 1 .  
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Step 2 . d is a distance function .  

Step 1 shows that d ( p , p0 ) > 0 for every p e M \ {p0} and hence d 

satisfies condition ( i ) in Lemma . The proofs of ( ii ) and ( iii ) remain 

unchanged in the intrinsic setting and this proves Step 2 .  

Step 3 . The topology on M induced by d agrees with the topology 

induced by the smooth STRUCTURE .  

Assume first that W C M is open with respect to the manifold topology 

and let p0 e W . Let 0 : U ^ Q be a coordinate chart of M onto an open 

subset Q C rm such that p0 e U , and choose an open neighborhood V C 

U of p0 and constants 5 , r > 0 as in Step 1 , so that holds for all p e V 

and d ( p , p0 ) > 5r for every p e M \ V . Then 0 ( V n W ) is an open 

subset of Q and so there is an e > 0 such that B^ - ie ( 0 ( p0 ) ) C 0 ( V n 

W ) and e < 5r . Let p e M with d ( p , p0 ) < e . Thenp e V , hence \0 ( p ) 

— 0 ( p0 ) \ < 5 - 1d ( p , p0 ) and this implies 0 ( p ) e 0 ( Vn W ) . Thus 

Be ( p0 , d ) C W and so W is open with respect to d .  

Conversely , assume that W C M be open with respect to d and choose a 

coordinate chart 0 : U ^ Q onto an open set Q C rm . We must prove that 

0 ( U n W ) is an open subset of Q . To see this , choose x0 e 0 ( U n W ) 

and let p0 := 0 - 1 ( x0 ) e U n W . Now choose V C U and 5 , r > 0 as in 

Step 1 . Choose e > 0 such that B^ - ie ( p0 , d ) C W and Be ( x0 ) C 0 ( 

V ) . Let x e rn such that \x — x0\ < e . Then x e 0 ( V ) and therefore p 

:= 0 - 1 ( x ) e V . This implies d ( p , p0 ) < 5 - 1\0 ( p ) — 0 ( p0 ) \ = 5 - 

1\x — x0\ < 5 - 1e , thus p e W n U , and so x = 0 ( p ) e 0 ( W n U ) . 

Thus 0 ( W n U ) is an open , and so W is open in the manifold topology 

of M .  

Geodesics and the Levi - Civita Connection 

With the covariant derivative understood we can define Geodesics on M 

as smooth curves 7 : I ^ M that satisfy the equation 

V7 = 0 ,  

as in Definition . Then all the above results about Geodesics , as well as 

their proofs , carry over almost verbatim to the intrinsic setting . In 

particular , geodesics are in local coordinates described by equation and 
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they are the critical points of the energy functional on the space Qp , q of 

all paths 7 : [0 , 1] ^ M with fixed endpoints 7 ( 0 ) = p and 7 ( 1 ) = q . 

Here we use the fact that Lemma extends to the intrinsic setting via the 

Embedding Theorem So for every vector field X <= Vect ( Y ) along 7 

with X ( 0 ) =0 and X ( 1 ) =0 there exists a curve of curves r ^ Qp , q : s 

^ 7s with 70 = 7 and ds7s |s=0 = X . Then , by the properties of the Levi - 

Civita connection , we have 

The right hand side vanishes for all X if and only if V7 = 0With this 

understood , we find that , for all p <= M and v <= TpM , there exists a 

unique geodesic 7 : Ip , v ^ M on a maximal open interval Ip , v C r 

containing zero that satisfies 7 ( 0 ) = p and 7 ( 0 ) = v . This gives rise to 

a smooth exponential map expp : Vp = {v <= TpM | 1 <= Ip , v} ^ M as 

in which satisfies dexpp ( 0 ) = id : TpM ^ TpM as in Corollary . This 

leads directly to the injectivity radius , the GauB Lemma the local length 

minimizing property of geodesics in Theorem and the Convex 

Neighborhood Theorem . Also the proof of the equivalence of metric and 

geodesic completeness in Theorem and of the Hopf - Rinow Theorem 

carry over verbatim to the intrinsic setting of general Riemannian 

manifolds . The only place where some care must be taken is in the proof 

of the Curve Shortening Lemma as is spelled out in Exercise below .  

Examples and Exercises 

Exercise . Choose a coordinate chart 0 : U ^ Q with 0 ( po ) = 0 such that 

the metric in local coordinates satisfies 

gij ( 0 ) = 5ij .  

Refine the estimate and show that 

r d ( p , q ) = 1 

|0 ( p ) - 0 ( q ) | .  

This is the intrinsic analogue of Lemma Use this to prove that equa - tion 

continues to hold for all Riemannian manifolds , i . e .  

d ( expp ( 5v ) expp ( ^w ) )  

lim       = |v — w| 
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s^o 5 

for p <= M and v , w <= TpM . With this understood , the proof of the 

Curve Shortening Lemma carries over verbatim to the intrinsic setting .  

Exercise . The real projective space rPn inherits a Riemannian met - ric 

from Sn as it is a quotient of Sn by an isometric involution . Prove that 

each geodesic in Sn with its standard metric descends to a geodesic in 

rPn .  

Exercise . Let f : S3 ^ S2 be the Hopf fibration defined by 

f ( z , w ) = ( jz|2 — |w|2 , 2Re zw , 21m zw^j 

Prove that the image of a great circle in S3 is a nonconstant geodesic in 

S2 if and only if it is orthogonal to the fibers of f , which are also great 

circles . Here we identify S3 with the unit sphere in c2 

Exercise . Prove that a nonconstant geodesic 7 : r ^ S2n + 1 de - scends 

to a nonconstant geodesic in cPn with the Fubini - Study if and only if 7 ( 

t ) T c7 ( t ) for every t <= r .  

Exercise Consider the manifold 

Fk ( rn ) :^D <= rnxfc | DtD = ll} 

of orthonormal k - frames in rn , equipped with the Riemannian metric 

inherited from the standard inner product 

{X , Y} := trace ( XTY )  

on the space of real n x k - matrices .  

Check your Progress -  1 

Discuss Convexity 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Minimal Geodesics 

_______________________________________________________ 
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________________________________________________________ 

________________________________________________________ 

 

6.6 LET US SUM UP 

In this unit we have discussed the definition and example of Convexity , 

Minimal Geodesics , Completeness and Hopf—Rinow, Geodesics in the 

Intrinsic Setting… Intrinsic Distance 

 

6.7 KEYWORDS 

Convexity ….. A subset of an affine space is called convex iff it contains 

the line segment joining any two of its points 

Minimal Geodesics ….. Any straight line segment in Euclidean space is 

the shortest curve joining its endpoints 

Completeness and Hopf—Rino….. For a Riemannian manifold there are 

different notions of completeness 

Geodesics in the Intrinsic Setting Intrinsic Distance….. Let M be a 

connected smooth manifold equipped with a Riemannian metric 

 

6.8 QUESTIONS FOR REVIEW 

Explain Convexity  

Explain Minimal Geodesics  

 

6.9 ANSWERS TO CHECK YOUR 

PROGRESS 
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Convexity   ( answer for Check your Progress -  1 Q ) 

Minimal Geodesics  ( answer for Check your Progress -  1 Q )  

 

 

6.10 REFERENCE 

 

Differential Geometry, Differential Geometry & Application, 

Introduction to Defferential Geometry, Basic of Differential Geometry. 
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UNIT-VII: CURVATURE 

 

STRUCTURE 

7.0 Objectives 

7.1 Introduction  

7.2 Curvature 

7. 3 Generalized Theorema Egregium 

7. 4 Theorem of Egregium 

7.5 Gaussian Curvature 

7.6 Let Us Sum Up 

7.7 Keywords 

7.8 Questions For Review 

7.9 Answers To Check Your Progress 

7.10 References 

7.0 OBJECTIVES 

 

After studying this unit , you should be able to: 

 

 Understand about Curvature 

 Generalized Theorem of Egregium 

 Theorem of Egregium 

 Gaussian Curvature 

7.1 INTRODUCTION 

Differential geometry arose and developed as a result of and in 

connection to the mathematical analysis of curves and surfaces 

Mathematical analysis of curves and surfaces had been developed to 
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answer some of unanswered questions that appeared in calculus like the 

reasons for relationships between complex shapes and curves , series and 

analytic functions Curvature , Generalized Theorema Egregium , 

Theorem of Egregium , Gaussian Curvature 

7.2 CURVATURE 

This chapter begins by introducing the notion of an isometry . It shows 

that isometries of embedded manifolds preserve the lengths of curves and 

can be characterized as diffeomorphisms whose derivatives preserve the 

inner products . The chapter then moves on to the Riemann curvature 

tensor . The next section is devoted to the generalized GauB Theorema 

Egregium which asserts that isometries preserve geodesics , the covariant 

derivative , and the Riemann curvature tensor . That section also shows 

that isometries form finite dimensional Lie groups . The final section 

discusses the Riemann curvature tensor in local coordinates and shows 

how all the definitions and results of the present chapter carry over to the 

intrinsic setting of Riemannian manifolds 

Isometries 

Let M and M' be connected submanifolds of rn . An isometry is an 

isomor - phism of the intrinsic geometries of M and M' . Recall the 

definition of the intrinsic distance function 

d : M x M ^ [0 , x )  

in by 

for p , q <= M . Let d' denote the intrinisic distance function on M' .  

Theorem ( Isometries ) . Let $ : M ^ M' be a bijective map . Then the 

following are equivalent .  

$ intertwines the distance functions on M and M' , i . e .  

d' ( $ ( p ) , $ ( q ) ) = d ( p , q )  

for all p , q e M .  

$ is a diffeomorphism and 
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df ( p ) : TPM ^ T^ ( p ) M' 

is an orthogonal isomorphism for every p e M .  

$ is a diffeomorphism and 

L ( f o Y ) = l ( y ) for every smooth curve y : [a , b] ^ M .  

The bijection $ is called an isometry if it satisfies these equivalent condi 

- tions . In the case M = M1 the isometries $ : M ^ M form a group 

denoted by I ( M ) and called the isometry group of M .  

Lemma . For every p e M there exists a constant e > 0 such that , for all v 

, w e TpM with 0 < |w| < |v| < e , we have 

|w| 

d ( expp ( w ) , expp ( v ) ) = |v| — |w| =^ w = - j - j - v . ( 5 . 1 . 1 )  

Remark . It follows from the triangle inequality and Theorem that 

d ( expp ( v ) , expp ( w ) ) > d ( expp ( v ) , p ) — d ( expp ( w ) , p ) = |v| 

— |w| 

whenever 0 < |w| < |v| < inj ( p ) . Lemma asserts that equality can only 

hold when w is a positive multiple of v or , to put it differently , that the 

distance between expp ( v ) and expp ( w ) must be strictly bigger that |v| 

— |w| whenever w is not a positive multiple of v .  

Proof of Lemma . As in Corollary we denote 

Be ( p ) := {v e TpM | |v| < e} ,  

Ue ( p ) := {q e M | d ( p , q ) < e} .  

By Theorem and the definition of the injectivity radius , the exponential 

map at p is a diffeomorphism expp : Be ( p ) ^ Ue ( p ) for e < inj ( p ) . 

Choose 0 < r < inj ( p ) . Then the closure of Ur ( p ) is a compact subset 

of M . Hence there is a constant e > 0 such that e < r and e < inj ( p' ) for 

every p' e Ur ( p ) . Since e < r we have 

e < inj ( p' ) V p' e Ue ( p ) .   
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Thus expp / : Be ( p' ) ^ Ue ( p' ) is a diffeomorphism for every p' e Ue ( 

p ) . Define pi := expp ( w ) and p2 := expp ( v ) . Then , by assumption , 

we have d ( pi , p2 ) = |v| — |w| < e . Since p1 e Ue ( p ) it follows from 

our choice of e that e < inj ( p1 ) . Hence there is a unique tangent vector 

v1 e Tpi M such that 

|v11 = d ( pi , p2 ) = |v| — |w| , expp1 ( vi ) = p2 .  

Following first the shortest geodesic from p to p1 and then the shortest 

geodesic from p1 to p2 we obtain ( after suitable reparametrization ) a 

smooth Y : [0 , 2] ^ M such that 

Y ( 0 ) = p , Y ( 1 ) = p1 , y ( 2 ) = p2 ,  

and 

l ( Y|[0 , 1] ) = d ( p , p1 ) = |w| , l ( Y|[1 , 2] ) = d ( p1 , p2 ) = |v| — |w| .  

Thus L ( y ) = |v| = d ( p , p2 ) . Hence , by Theorem there is a smooth 

function P : [0 , 2] ^ [0 , 1] satisfying 

P ( 0 ) = 0 , P ( 2 ) = 1 , / 3 ( t ) > 0 , Y ( f ) =expp ( ^ ( t ) v )  

for every t e [0 , 2] . This implies 

expp ( w ) = p1 = y ( 1 ) = expp ( P ( 1 ) v ) , 0 < P ( 1 ) < 1 .  

Since w and P ( 1 ) v are both elements of Be ( p ) and expp is injective 

on Be ( p ) , this implies w = P ( 1 ) v . Since P ( 1 ) > 0 we have P ( 1 ) = 

|w| / |v| .  

Proof of Theorem follows from the definition of the length of a curve . 

Namely 

r b 

L ( f oy ) =b 

\df ( Y ( t ) ) 7 ( t ) \ dt 

b 

= / \7 ( t ) \ dt 
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J a 

= l ( y ) .  

In the third equation we have used ( ii ) . That ( iii ) implies ( i ) follows 

immediately from the definition of the intrinsic distance functions d and 

d! .  

We prove that ( i ) implies ( ii ) . Fix a point p e M and choose e > 0 so 

small that e < inj ( p ) and that the assertion of Lemma holds for the point 

p' := f ( p ) e M' . Then there is a unique homeomorphism 

: B ( p ) ^ B<= ( f ( p ) )  

and f : Us ( p ) ^ Us ( f ( p ) ) is a homeomorphism by ( i ) . Hence Tp : 

Bs ( p ) ^ Bs ( f ( p ) ) is a homeomorphism .  

Claim 1 . The map Tp satisfies the following equations for every v e Bs ( 

p ) and every t e [0 , 1]: 

exp^ ( p ) ( $p ( v ) ) = f ( expp ( v ) )   

\Tp ( v ) \ = d' ( f ( p ) , exp^p ) ( Tp ( v ) ) )  

= d' ( f ( p ) , f ( expp ( v ) ) )  

= d ( p , expp ( v ) )  

= |v| .  

Here the second equation follows and the third equation from ( i ) . 

Equation holds for t = 0 because Tp ( 0 ) = 0 and for t = 1 it is a tautology 

. Hence assume 0 < t < 1 . Then 

d / ( exp^ ( p ) ( $P ( tv ) ) exP^ ( P} ( $p ( v ) ) ) = d' ( ^ ( exPp ( tv ) ) , ^ 

( exPp ( v ) ) )  

= d ( expp ( tv ) , expp ( v ) ) = |v| — |tv| 

= |$p ( v ) | — |$p ( tv ) | .  

Here the first equation follows from the second equation from ( i ) , the 

third equation from Theorem and the fact that |v| < inj ( p ) , and the last 
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equation follows Since 0 < |Tp ( tv ) | < |Tp ( v ) | < e we can apply 

Lemma and obtain 

*p ( tv ) = Ivtf *p ( v ) =t<Mv ) .  

This proves Claim 1 .  

By Claim 1 , Tp extends to a bijective map Tp : TpM ^ T^ ( p ) M / via 

where 5 > 0 is chosen so small that 5 |v| < e . The right hand side of this 

equation is independent of the choice of 5 . Hence the extension is well 

defined . It is bijective because the original map Tp is a bijection from 

Be ( p ) to Be ( 0 ( p ) ) for all v E TpM and all t > 0 .  

Claim 2 . The extended map Tp : TpM ^ T^ ( p ) M / is linear and 

preserves the inner product .  

d ( expp ( tv ) , expp ( tw ) )  

|v — w| = lim 

t^ 0 

t 

d / ( ^ ( expp ( tv ) ) , ^ ( expp ( tw ) ) ) t 

d' ( exp^P ) ( $p ( tv ) ) ) , exp^ ( p ) ( $p ( tw ) ) ) )  

t 

d / ( exp^p ) ( t$p ( v ) ) ) , exp^ ( p ) ( t$p ( w ) ) ) )  

t 

|$p ( v ) — $p ( w ) | .  

2{v , w ) = |v|2 + |w|2 - |v - w|2 

= |Tp ( v ) |2 + |Tp ( w ) |2 - |Tp ( v ) - Tp ( w ) |2 = 2{Tp ( v ) , Tp ( w ) ) 

.  

Thus Tp preserves the inner product . Hence , for all v\ , v2 , w <= TpM , 

we have 
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 ( Tp ( v i + v2 ) , Tp ( w ) ) = {vi + V2 , w )  

= ( vi , w ) + ( v2 , w )  

= ( Tp ( vi ) , Tp ( w ) ) + ( Tp ( v2 ) , Tp ( w ) ) = ( Tp ( vi ) + Tp ( v2 ) , 

Tp ( w ) ) .  

Since Tp is surjective , this implies 

Tp ( vi + v2 ) = Tp ( vi ) + Tp ( v2 )  

for all vi , v2 <= TpM . With vi = v and v2 = —v we obtain 

Tp ( —v ) = —Tp ( v )  

for every v <= TpM and by this gives 

Tp ( tv ) = tTp ( v ) for all v <= TpM and t <= r . This proves Claim 2 .  

Claim 3 . 0 is smooth and d0 ( p ) = Tp .  

By we have 

0 = exp^ ( p ) °Tp ° exp - i : U^ ( p ) ^ U<= ( 0 ( P ) ) .  

Since Tp is linear , this shows that the restriction of 0 to the open set 

U<= ( p ) is smooth . Moreover , for every v <= TpM we haveexp^ ( p ) ( 

tTp ( v ) ) = Tp ( v ) .  

Exercise . Prove that every isometry 0 : rn ^ rn is an affine map 

0 ( p ) = Ap + b 

where A <= O ( n ) and b <= rn . Thus 0 is a composition of translation 

and rotation . Hint: Let ei , . . . , en be the standard basis of rm . Prove 

that any two vectors v , w <= rn that satisfy 

|v| = |w| 

and 

|v — ej| = |w — ej| for i = 1 , . . . , n 

must be equal .  
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Remark . If 0 : rn ^ rn is an isometry of the ambient Euclidean space with 

0 ( M ) = M' then certainly 0 := 0|m is an isometry from M onto M' . On 

the other hand , if M is a plane manifold 

M = { ( 0 , y , z ) <= r3 | 0 < y < n / 2} 

and M' is the cylindrical manifold 

M' = { ( x , y , z ) <= r3 | x2 + y2 = 1 , x > 0 , y > 0} 

Then the map 0 : M ^ M' defined by 

0 ( 0 , y , z ) := ( cos ( y ) , sin ( y ) , z )  

is an isometry which is not of the form 0 = 0|m . Indeed , an isometry of 

the form 0 = 0|M necessarily preserves the second fundamental form ( as 

well as the first ) in the sense that 

d^ ( p ) hp ( v , w ) = h^ ( p ) ( d0 ( p ) v , d0 ( p ) w )  

for v , w <= TpM but in the example h vanishes identically while h' does 

not . We may thus distinguish two fundamental question: 

I . Given M and M' when are they extrinsically isomorphic , i . e . when 

is there an ambient isometry 0 : rn ^ rn with 0 ( M ) = M'? 

II . Given M and M' when are they intrinsically isomorphic , i . e . when 

is there an isometry 0 : M ^ M' from M onto M'? 

As we have noted , both the first and second fundamental forms are 

preserved by extrinsic isomorphisms while only the first fundamental 

form need be preserved by an intrinsic isomorphism ( i . e . an isometry ) 

.  

A question which occurred to GauB ( who worked for a while as a 

cartographer ) is this: Can one draw a perfectly accurate map of a portion 

of the earth? ( i . e . a map for which the distance between points on the 

map is proportional to the distance between the corresponding points on 

the surface of the earth ) . We can now pose this question as follows: Is 

there an isometry from an open subset of a sphere to an open subset of a 

plane? GauB answered this question negatively by associating an 

invariant , the GauBian curvature 
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K : M ^ r ,  

to a surface M c r3 . According to his Theorema Egregium 

K' o 0 = K 

for an isometry 0 : M ^ M' . The sphere has positive curvature; the plane 

has zero curvature; hence the perfectly accurate map does not exist . Our 

aim is to explain these ideas .  

We shall need a concept slightly more general than that of "isometry" .  

Definition 5 . 1 . 6 . A smooth map 0 : M ^ M' is called a local isometry 

if its derivative 

d0 ( p ) : TpM ^ T^ ( p ) M' is an orthogonal linear isomorphism for 

every p e M .  

Remark . Let M c rn and M' c rm' be manifolds and 0 : M ^ M' be a map . 

The following are equivalent . 0 is a local isometry .  

For every p e M there are open neighborhoods U C M and U' C M' such 

that the restriction of 0 to U is an isometry from U onto U' .  

Example . The map 

r ^ S1 : d ^ eie is a local isometry but not an isometry .  

Exercise Let M C rn be a compact connected 1 - manifold . Prove that M 

is diffeomorphic to the circle S1 . Define the length of a compact 

connected Riemannian 1 - manifold . Prove that two compact connected 

1 - manifolds M , M' C rn are isometric if and only if they have the same 

length . Hint: Let 7 : r ^ M be a geodesic with | / y ( t ) | = 1 . Show that Y 

is not injective; otherwise construct an open cover of M without finite 

subcover . If to < t1 with y ( to ) = Y ( t1 ) show that Y ( to ) = 7 ( H ) ; 

otherwise show that y ( t0 + 1 ) = y ( t1 — t ) for all t and find a 

contradiction .  

We close this section with a result which asserts that two local isometries 

that have the same value and the same derivative at a single point must 

agree everywhere , provided that the domain is connected .  
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Lemma . Let M C rn and M' C rn' be smooth m - manifolds and assume 

that M is connected . Let 

0 : M ^ M' , ^ : M ^ M' 

be local isometries and let po e M such that 

0 ( po ) = ^ ( po ) =: p'o , d0 ( Po ) = d^ ( po ) : TpoM ^ Tp / QM' .  

Then 0 ( p ) = ^ ( p ) for every p e M .  

Proof . Define the set 

Mo := {p e M | 0 ( p ) = ^ ( p ) , d<fi ( p ) = d^ ( p ) } .  

This set is obviously closed . We prove that Mo is open . Let p e Mo and 

choose U C M and U' C M' as in Remark . Denote 

:= d0 ( p ) = d^ ( p ) : TpM ^ TpM' , p' := 0 ( p ) = ^ ( p )  

there exists a constant e > 0 such that U<= ( p ) C U and U<= ( p' ) C U' 

and 

q e U<= ( p ) =^ 0 ( q ) =expp , oTp o exp - 1 ( q ) = ^ ( q ) .  

Hence U<= ( p ) C Mo . Thus Mo is open , closed , and nonempty . Since 

M is connected it follows that Mo = M Riemann Curvature Tensor 

Definition and Gaufi—Codazzi 

Let M c rn be a smooth manifold and 7 : r2 ^ M be a smooth map . 

Denote by ( s , t ) the coordinates on r2 . Let Z e Vect ( y ) be a smooth 

vector field along 7 , i . e . Z : r2 ^ rn is a smooth map such that Z ( s , t ) 

e TY ( s , t ) M for all s and t . The covariant partial derivatives of Z with 

respect to the variables s and t are defined by 

dZ dZ 

V*Z = n ( Y ) Ids - VZ := n ( 7 ) w .  

In particular ds7 = d^ / ds and dtY = 87 / dt are vector fields along 7 and 

we have 

VsdtY - VtdsY = 0 
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as both terms on the left are equal to n ( 7 ) dsdt7 . Thus ordinary partial 

differentiation and covariant partial differentiation commute . The 

analogous formula ( which results on replacing d by V and 7 by Z ) is in 

general false . Instead we have the following .  

Definition . The Riemann curvature tensor assigns to eachp e M the 

bilinear map 

Rp : TpM x TpM ^ L ( TpM , TpM )  

characterized by the equation 

Rp ( u , v ) w = ( VsVtZ - VtVsZ ) ( 0 , 0 )  

for u , v , w e TpM where 7 : r2 ^ M is a smooth map and Z e Vect ( q ) 

is a smooth vector field along 7 such that 

Y ( 0 , 0 ) = p , dsY ( 0 , 0 ) = u , dtY ( 0 , 0 ) = v , Z ( 0 , 0 ) = w .  

We must prove that R is well defined , i . e . that the right hand side of 

equation is independent of the choice of 7 and Z . This follows from the 

GauB - Codazzi formula which we prove next . Recall that the second 

fun - damental form can be viewed as a linear map hp : TpM ^ L ( TpM , 

TpM^ ) and that , for u e TpM , the linear map hp ( u ) e L ( TpM , TpMx 

) and its dual hp ( u ) * e L ( TpM± , TpM ) are given by 

hp ( u ) v = ( dn ( p ) u ) v , hp ( u ) *w = ( dn ( p ) u ) w 

for v e TpM and w e TpMx .  

Theorem The Riemann curvature tensor is well defined and given by the 

GauB—Codazzi formula 

Rp ( u , v ) = hp ( u ) *hp ( v ) — hp ( v ) *hp ( u )   

for u , v e TpM .  

Proof . Let u , v , w e TpM and choose a smooth map Y : r2 ^ M and a 

smooth vector field Z along 7 . Then , by the GauB Weingarten , we have 

VtZ = dtZ — h7 ( dti ) z = dtZ — ( dII ( 7 ) dt7 ) Z = dtZ — ( dt ( n o 7 ) 

) Z .  
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Hence 

OsVtZ = dsdtZ — ds ( ( dt ( n o 7 ) ) z )  

= dsdtZ — ( dsdt ( n o 7 ) ) Z — ( dt ( n o 7 ) ) dsZ = dsdtZ — ( dsdt ( n 

o 7 ) ) Z — ( dn ( 7 ) dt7 ) ( VsZ + h7 ( ds7 ) Z ) = dsdtZ — ( dsdt ( U o y 

) ) Z — h7 ( dtY ) VsZ — h7 ( dt7 ) *h7 ( dsY ) Z .  

Interchanging s and t and taking the difference we obtain 

ds VtZ — dtVsZ = h7 ( dsY ) *h7 ( dtY ) Z — h7 ( dtY ) * h7 ( dsY ) Z 

+ h7 ( dsY ) Vt Z — h7 ( dtY ) VsZ .  

Here the first two terms on the right are tangent to M and the last two 

terms on the right are orthogonal to TYM . Hence 

Vs VtZ — VtVsZ = n ( Y ) ( dsVtZ — dtVsZ )  

= h7 ( dsY ) *h7 ( dtY ) Z — h7 ( dtY ) *h7 ( dsY ) Z .  

Evaluating the right hand side at s = t = 0 we find that 

 ( VsVtZ — VtVsZ ) ( 0 , 0 ) = hp ( u ) *hp ( v ) w — hp ( v ) *hp ( u ) w 

.  

This proves the GauB - Codazzi equation and shows that the left hand 

side is independent of the choice of Y and Z .  

 

Covariant Derivative of a Global Vector Field 

So far we have only defined the covariant derivatives of vector fields 

along curves . The same method can be applied to global vector fields . 

This leads to the following definition .  

Definition ( Covariant derivative ) . Let M C rn be an m - dimen - sional 

submanifold and X be a vector field on M . Fix a point p e M and a 

tangent vector v e TpM . The covariant derivative of X at p in the 

direction v is the tangent vector 

VX ( p ) := n ( p ) dX ( p ) v e TPM , where n ( p ) e rnxn denotes the 

orthogonal projection onto TpM .  
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Remark . If 7 : I ^ M is a smooth curve on an interval I C r and X e Vect 

( M ) is a smooth vector field on M then X o 7 is a smooth vector field 

along 7 . The covariant derivative of X o 7 is related to the covariant 

derivative of X by the formula 

V ( X o 7 ) ( t ) = Vy ( t ) X ( 7 ( t ) ) .   

Remark ( GauB—Weingarten formula ) . Differentiating the equation X 

= nX ( understood as a function from M to rn ) and using the notation 

dvX ( p ) := dX ( p ) v for the derivative of X at p in the direction v we 

obtain the GauB—Weingarten formula for global vector fields: 

dv X ( p ) = Vv X ( p ) + hp ( v ) X ( p ) .   

Remark 5 . 2 . 6 ( Levi - Civita connection ) . Differentiating a vector 

field Y on M in the direction of another vector field X we obtain a vector 

field VXY e Vect ( M ) defined by 

 ( VxY ) ( p ) := Vx ( p ) Y ( p )  

for p e M . This gives rise to a family of linear operators 

Vx : Vect ( M ) ^ Vect ( M ) ,  

one for every vector field X e Vect ( M ) , and the assignment 

Vect ( M ) ^ L ( Vect ( M ) , Vect ( M ) ) : X ^ Vx 

is itself a linear operator . This operator is called the Levi - Civita 

connection on the tangent bundle TM . It satisfies the conditions 

V / x ( Y ) = f Vx Y ,   ( 5 . 2 . 6 )  

Vx ( fY ) = fVxY + ( Lxf ) Y  ( 5 . 2 . 7 )  

Lx ( Y , Z ) = ( VxY , Z ) + ( Y , VxZ ) ,   ( 5 . 2 . 8 )  

Vy X - Vx Y = [X , Y] ,   ( 5 . 2 . 9 )  

for all X , Y , Z e Vect ( M ) and f e F ( M ) , where LXf = df o X and [X 

, Y] e Vect ( M ) denotes the Lie bracket of the vector fields X and Y . 

The next lemma asserts that the Levi - Civita connection is uniquely 

deter - mined .  
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Lemma ( Uniqueness Lemma ) . There is a unique linear operator 

Vect ( M ) ^ L ( Vect ( M ) , Vect ( M ) ) : X ^ Vx satisfying equations 

for all X , Y , Z e Vect ( M ) .  

Proof . Existence follows from the properties of the Levi - Civita 

connection . We prove uniqueness . Let X ^ DX be any linear operator 

from Vect ( M ) to L ( Vect ( M ) , Vect ( M ) ) that satisfies . Then we 

have 

Lx ( Y , Z ) = ( DxY , Z ) + ( Y , DxZ ) ,  

Ly ( X , Z ) = ( DyX , Z ) + ( X , DyZ ) ,  

 - Lz ( X , Y ) = - ( DzX , Y ) -  ( X , Dz Y ) .  

Adding these three equations we find 

Lx ( Y , Z ) + Ly ( Z , X ) - Lz ( X , Y )  

= 2 ( Dx Y , Z ) + ( DyX - DxY , Z )  

 + ( X , DyZ - DzY ) + ( Y , DxZ - DzX )  

= 2 ( DxY , Z ) + ( [X , Y] , Z ) + ( X , [Z , Y] ) + ( Y , [Z , X] ) .  

The same equation holds for the Levi - Civita connection and hence 

 ( DxY , Z ) = ( VxY , Z ) .  

This implies DXY = VXY for all X , Y e Vect ( M ) .  □ 

Remark ( The Levi - Civita connection in local coordinates ) .  

Let 0 : U ^ 0 be a coordinate chart on an open set U C M with values in 

an open set 0 C rm . In such a coordinate chart a vector field X e Vect ( 

M ) is represented by a smooth map 

<= = ( A , . . . , <= m ) :0 ^ rm 

defined by 

<= ( 0 ( p ) ) = d<ft ( p ) X ( p )  
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for p e U . If Y e Vect ( M ) is represented by n then VXY is represented 

by the function 

m o k m 

 ( Vfn ) k := E dXi + E 4«V .  

i= 1 i , j= 1 

Here the rkj : 0 ^ r are the Christoffel symbols defined by 

rk := kt 1 ( d9a . dg<=j %j\  ( 52ii )  

ij :=^ - g HdXj + up - d¥ , i=i v 7 

where gij is the metric tensor and gij is the inverse matrix so that 

E gij gjk = Jk 

j 

This formula can be used to prove the existence statement in Lemma and 

hence define the Levi - Civita connection in the intrinsic setting .  

Exercise In the proof of Lemma we did not actually use that the operator  

Dx : Vect ( M ) ^ Vect ( M ) is linear nor that the operator X ^ Dx is 

linear . Prove directly that if a map 

Dx : L ( M ) ^ L ( M )  

satisfies for all Y , Z e Vect ( M ) then DX is linear . Prove that every 

map Vect ( M ) ^ L ( Vect ( M ) , Vect ( M ) ) : X ^ Dx that satisfies is 

linear .  

A Global Formula 

Lemma For X , Y , Z <= Vect ( M ) we have 

R ( X , Y ) Z = XxXyZ — XyXxZ + X[x , y]Z .   

Proof . Fix a point p <= M . Then the right hand side of equation at p 

remains unchanged if we multiply each of the vector fields X , Y , Z by a 

smooth function f : M ^ [0 , 1] that is equal to one near p . Choosing f 

with compact support we may therefore assume that the vector fields X 
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and Y are complete . Let <fs denote the flow of X and f ) t the flow of Y . 

Define the map y : r2 ^ M by 

Y ( s , t ) := <ps o f ) t ( p ) , s , t <= r .  

Then 

dsY = X ( Y^ dtY = ( 0*Y ) ( Y ) .  

Hence , by Remark , we have 

Xs ( Z o y ) = ( XxZ ) ( y ) , Xt ( Z o y ) = ( X^ - yZ ) ( y ) .  

This implies 

XsXt ( Z o y ) = ( Xds7X^syZ ) ( y ) + ( Xds^jyZ ) ( y ) .  

Since 

d 

^s Y = [X , Y] 

s 

* Y s=0 

and dsY = X ( y ) we obtain 

XsXt ( Z o y ) ( 0 , 0 ) = XxXyZ ( p ) + X[x , y]Z ( p ) , XtXs ( Z o y ) ( 0 

, 0 ) = XyXxZ ( p ) .  

Hence 

RP ( X ( p ) , Y ( p ) ) Z ( p ) = ( XsXt ( Z o y ) — XtXs ( Z o y^ ( 0 , 0 )  

= Xx Xy Z ( p ) — Xy Xx Z ( p ) + X[x , y ] Z ( p ) .  

Remark Equation can be written succinctly as 

[Vx , W] + Vx , y] = R ( X , Y ) .   This can be contrasted with the 

equation 

[Lx , Ly] + C[x , y] =0 for the operator LX on the space of real valued 

functions on M .  
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Remark Equation can be used to define the Riemann curvature tensor . 

To do this one must again prove that the right hand side of equation at p 

depends only on the values X ( p ) , Y ( p ) , Z ( p ) of the vector fields X 

, Y , Z at the point p . For this it suffices to prove that the map 

Vect ( M ) x Vect ( M ) x Vect ( M ) ^ Vect ( M ) : ( X , Y , Z ) ^ R ( X , 

Y ) Z is linear over the Ring F ( M ) of smooth real valued functions on 

M , i . e .  

R ( fX , Y ) Z = R ( X , fY ) Z = R ( X , Y ) fZ = fR ( X , Y ) Z  

for X , Y , Z e Vect ( M ) and f e F ( M ) . The formula follows from the 

equations , and [X , fY] = f [X , Y] — ( LXf ) Y . It follows from that the 

right hand side of at p depends only on the vectors X ( p ) , Y ( p ) , Z ( p 

) . The proof requires two steps . One first shows that if X vanishes near 

p then the right hand side of vanishes at p ( and similarly for Y and Z ) . 

Just multiply X by a smooth function equal to zero at p and equal to one 

on the support of X; then fX = X and hence the vector field R ( X , Y ) Z 

= R ( fX , Y ) Z = fR ( X , Y ) Z vanishes at p . Second , we choose a 

local frame Ei , . . . , Em e Vect ( M ) , i . e . vector fields that form a 

basis of TpM for each p in some open set U C M . Then we may write 

m m m 

X = <= fEi , Y = <= Ej , Z = <= Zk Ek 

i=1 j=1 k=1 

in U . Using the first step and the F ( M ) - multilinearity we obtain 

m 

R ( X , Y ) Z = <= einjZkR ( Ei , Ej ) Ek 

i , j , k=1 

in U . If X' ( p ) = X ( p ) then Zi ( p ) = Z;i ( p ) so if X ( p ) = X' ( p ) , Y 

( p ) = Y' ( p ) , Z ( p ) = Z' ( p ) then ( R ( X , Y ) Z ) ( p ) = ( R ( X' , Y' ) 

Z' ) ( p ) as required .  

Symmetries 
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Theorem . The Riemann curvature tensor satisfies 

R ( Y , X ) = - R ( X , Y ) = R ( X , Y ) * , R ( X , Y ) Z + R ( Y , Z ) X + 

R ( Z , X ) Y = 0 , {R ( X , Y ) Z , W ) = {R ( Z , W ) X , Y ) ,  

for X , Y , Z , W <= Vect ( M ) . Equation is the first Bianchi identity .  

Proof . The first equation in is obvious from the definition and the second 

follows from the GauB - Codazzi formula . Alternatively , choose a 

smooth map 7 : r2 ^ M and two vector fields Z , W along 7 . Then 

0 = Osdt{Z , W ) - Otds{Z , W )  

= ds{VtZ , w ) + ds{Z , Vt w ) - dt{VsZ , w ) - ot{Z , VsW )  

= {VsVtZ , W ) + {Z , VsVtW ) - {VtVsZ , W ) - {Z , VtVsW )  

= {R ( dsY , dtY ) Z , W ) - {Z , R ( dsY , dtY ) W ) .  

This proof has the advantage that it carries over to the intrinsic setting . 

We 

prove the first Bianchi identity: 

R ( X , Y ) Z + R ( Y , Z ) X + R ( Z , X ) Y 

= VxVyZ - VyVxZ + VfoY]Z + VyVzX - VzVyX + V[y , z]X 

 + Vz Vx Y - Vx Vz Y + V[z , x]Y = Vy , z]X - Vx[Y , Z] + Vz , x] Y - 

Vy [Z , X] + Vx , y]Z - Vz[X , Y] = [X , [Y , Z]] + [Y , [Z , X]] + [Z , [X 

, Y]] .  

The last term vanishes by the Jacobi identity . We prove by combining 

the first Bianchi identity  

{R ( X , Y ) Z , W ) - {R ( Z , W ) X , Y )  

= - {R ( Y , Z ) X , W ) - {R ( Z , X ) Y , W ) - {R ( Z , W ) X , Y ) = {R 

( Y , Z ) W , X ) + {R ( Z , X ) W , Y ) + {R ( W , Z ) X , Y ) = {R ( Y , 

Z ) W , X ) - {R ( X , W ) Z , Y )  

= {R ( Y , Z ) W , X ) - {R ( W , X ) Y , Z ) .  

□ 
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Note that the first line is related to the last by a cyclic permutation . 

Repeating this argument we find 

{R ( Y , Z ) W , X ) - {R ( W , X ) Y , Z ) = {R ( Z , W ) X , Y ) - {R ( X 

, Y ) Z , W ) .  

Remark . We may think of a vector field X on M as a section of the 

tangent bundle . This is reflected in the alternative notation 

Q° ( M , TM ) := Vect ( M ) .  

A 1 - form on M with values in the tangent bundle is a collection of 

linear maps A ( p ) : TpM ^ TpM , one for every p <= M , which is 

smooth in the sense that for every smooth vector field X and M the 

assignment p ^ A ( p ) X ( p ) defines again a smooth vector field on M . 

We denote by 

Q1 ( M , TM )  

the space of smooth 1 - forms on M with values in TM . The covariant 

deriva - tive of a vector field Y is such a 1 - form with values in the 

tangent bundle which assigns to every p <= M the linear map TpM ^ 

TpM : v ^ VvY ( p ) . Thus we can think of the covariant derivative as a 

linear operator 

V : Q° ( M , TM ) ^ Q1 ( M , TM ) .  

The equation asserts that the operators X ^ VX indeed determine a linear 

operator from Q° ( M , TM ) to Q1 ( M , TM ) . Equation asserts that this 

linear operator V is a connection on the tangent bundle of M . Equation 

asserts that V is a Riemannian connection and equation asserts that V is 

torsion - free . Thus Lemma can be restated as asserting that the Levi - 

Civita connection is the unique torsion - free Riemannian connection on 

the tangent bundle .  

Exercise . Extend the notion of a connection to a general vector bun - dle 

E , both as a collection of linear operators VX : Q° ( M , E ) ^ Q° ( M , E 

) , one for every vector field X <= Vect ( M ) , and as a linear operator 

V : Q° ( M , E ) ^ Q1 ( M , E )  
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satisfying the analogue of equation . Interpret this equation as a Leibniz 

rule for the product of a function on M with a section of E . Show that 

Vp is a connection on TMp . Extend the notion of curvature to 

connections on general vector bundles .  

Exercise . Show that the field which assigns to each p <= M the multi - 

linear map Ap : TpM x TpM ^ L ( TpMp , TpMp ) characterized by 

Ap ( dsY , dty ) Y = V^V^Y - V^V^Y for y : r2 ^ M and Y <= Vectp ( Y 

) satisfies the equation Ap ( u , v ) = hp ( u ) hp ( v ) * — hp ( v ) hp ( u ) 

* for p <= M and u , v <= TpM .  

Examples and Exercises 

Example . Let G C O ( n ) be a Lie subgroup , i . e . a subgroup that is 

also a submanifold . Consider the Riemannian metric on G induced by 

the inner product 

 ( v , w ) := trace ( vTw )   

on the ambient space g ( ( n , r ) = rnxn . Let g := Lie ( G ) = TjG be the 

Lie algebra of G . Then the Riemann curvature tensor on G can be 

expressed in terms of the Lie bracket ( see item ( d ) below ) .  

The maps g ^ ag , g ^ ga , g ^ g - 1 are isometries of G for every a e G .  

A smooth map 7 : r ^ G is a geodesic if and only if there exist matrices g 

e G and <= e g such that 

Y ( t ) = g exp ( t<= ) .  

For G = O ( n ) we have seen this in Example and the proof in the general 

case is similar . Hence the exponential map exp : g ^ G defined by the 

exponential matrix agrees with the time - 1 - map of the geodesic flow .  

Let y : r ^ G be a smooth curve and X e Vect ( Y ) be a smooth vector 

field along y . Then the covariant derivative of X is given by 

d 1 

Y ( t ) - 1VX ( t ) = —Y ( t ) - 1x ( t ) + 2 [Y ( t ) - 1^ ( t ) , Y ( t ) - 1x ( t 

) ] .  
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 ( Exercise: Prove equation . Hint: Since g C o ( n ) we have the identity 

trace ( ( <=n + n<= ) Z ) = 0 for all <= , n , Z e g . )  

The Riemann curvature tensor on G is given by 

g - 1Rg ( u , v ) w = - 4[[g - 1u , g - 1v] , g - 1w] .   

Note that the first Bianchi identity is equivalent to the Jacobi identity .  

Exercise . Prove that every Lie subgroup of O ( n ) is a closed subset and 

hence is compact . Show that the inner product on the Lie algebra g = Lie 

( G ) = TjG of a Lie subgroup G C O ( n ) is invariant under conjugation: 

 ( <= , n ) = {g<=g - 1 , gng - 1 )  

for all g e G and all <= , n e g . Show that 

{[<= , n] , C ) = {^ [n , Z ] )  

for all <= , n , Z e g .  

Example . Let G C GL ( n , r ) be any Lie subgroup , not necessarily 

contained in O ( n ) , and let 

g := Lie ( G ) = TtG 

be its Lie algebra . Fix any inner product on the Lie algebra g ( not 

necessarily invariant under conjugation ) and consider the Riemannian 

metric on G defined by 

 ( v , w ) g := ( vg - 1 , wg - 1 )  

for v , w <= TgG . This metric is called right invariant .  

Define the linear map A : g ^ End ( g ) by 

W ( ) n , Z ) = 2 ( ( { , in . Cl ) -  ( n , [C . €l ) - « . I€ . n] ) )  

for Z , n , Z <= g . Then A is the unique linear map that satisfies 

A ( Z ) + A ( Z ) * = 0 , A ( n ) Z + A ( Z ) n = [Z , n] 

for all Z , n <= g . Here A ( Z ) * denotes the adjoint operator with 

respect to the given inner product on g . Note that A ( Z ) n = — 1lZ , n] 

whenever the inner product on g is invariant under conjugation .  
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Let y : r ^ G be a smooth curve and X <= Vect ( y ) be a smooth vector 

field along y . Then the covariant derivative of X is given by 

VX = ( dt ( Xy - 1 ) + A ( ^7 - 1 ) Xy - ^ y .  

Hence a smooth curve y : r ^ G is a geodesic if and only if it satisfies the 

equation 

dt ( TY - 1 ) + a ( TY - 1 ) TY - 1 = 0 .  

The Riemann curvature tensor on G is given by 

 ( Rg ( u , v ) w ) g - 1 = ( A ( [ug - 1 , vg - 1] ) + [A ( ug - 1 ) , A ( vg - 1 

) ] ) wg - 1 for g <= G and u , v , w <= TgG .  

 

7.3 GENERALIZED THEOREM OF 

EGREGIUM 

We will now show that Geodesics , covariant differentiation , parallel 

trans - port , and the Riemann curvature tensor are all intrinsic , i . e . 

they are in - tertwined by isometries . In the extrinsic setting these results 

are somewhat surprising since these objects are all defined using the 

second fundamental form , whereas isometries need not preserve the 

second fundamental form in any sense but only the first fundamental 

form .  

Below we shall give a formula expressing the GauBian curvature of a 

surface M2 in r3 in terms of the Riemann curvature tensor and the first 

fundamental form . It follows that the GauBian curvature is also intrinsic 

. This fact was called by GauB the "Theorema Egregium" which explains 

the title of this section .  

Pushforward 

We assume throughout this section that M c rn and M' c rn' are smooth 

submanifolds of the same dimension m . As in §5 . 1 we denote objects 

on M' by the same letters as objects in M with primes affixed . In 

particular , g' denotes the first fundamental form on M' and R' denotes 

the Riemann curvature tensor on M' .  
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Let 0 : M ^ M' be a diffeomorphism . Using 0 we can move objects on M 

to M' . For example the pushforward of a smooth curve 7 : I ^ M is the 

curve 

0*Y := 0 o 7 : I ^ M' , the pushforward of a smooth function f : M ^ r is 

the function 

0*f := f o 0 - 1 : M' ^ r ,  

the pushforward of a vector field X e Vect ( Y ) along a curve 7 : I ^ M is 

the vector field 0*X e Vect ( 0*Y ) defined by 

 ( 0*X ) ( t ) := d0 ( 7 ( t ) ) X ( t )  

for t e I , and the pushforward of a global vector field X e Vect ( M ) is 

the vector field 0*X e Vect ( M' ) defined by 

 ( 0*X ) ( 0 ( p ) ) := d0 ( p ) X ( p )  

for p e M . Recall that the first fundamental form on M is the Riemannian 

metric g defined as the restriction of the Euclidean inner product on the 

ambient space to each tangent space of M . It assigns to each p e M the 

bilinear map gp e TpM x TpM ^ r given by 

gp ( u , v ) = {u , v} , u , v e TpM .  

Its pushforward is the Riemannian metric which assigns to each p' e M' 

the inner product ( 0*g ) p : TpM' x Tp M' ^ r defined by 

 ( 0*g ) ^ ( p ) ( d0 ( p ) u , d0 ( p ) v ) := gp ( u , v )  

for p := 0 - 1 ( p' ) e M and u , v e TpM . The pushforward of the 

Riemann curvature tensor is the tensor which assigns to each p' e M' the 

bilinear map ( 0*R ) p : Tp / M' x TpM' ^ L ( Tp / M' , TpM' ) , defined 

by 

 ( <p*R ) pp ) ( d<p ( p ) u , d0 ( p ) v ) := d0 ( p ) Rp ( u , v ) d0 ( p ) - 1 

for p := 0 - 1 ( p' ) e M and u , v e TpM .  

 

7.4 THEOREM OF EGREGIUM 
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Theorem ( Theorem of Egregium ) . The first fundamental form , 

covariant differentiation , Geodesics , parallel transport , and the 

Riemann curvature tensor are intrinsic . This means that for every 

isometry 0 : M ^ M' the following holds .  

0*g = g' .  

If X e Vect ( y ) is a vector field along a smooth curve 7 : I ^ M then 

V' ( 0* X ) = 0*VX 

and if X , Y e Vect ( M ) are global vector fields then 

VU 0*Y = 0* ( Vx Y ) .  

If Y : I ^ M is a geodesic then 0 o 7 : I ^ M' is a geodesic .  

If Y : I ^ M is a smooth curve then for all s , t e I: 

^o7 ( t , s ) d0 ( Y ( s ) ) = d0 ( Y ( t ) ) ^7 ( t , s ) .  

 ( v ) 0*R = R' .  

Proof . Assertion ( i ) is simply a restatement of Theorem . To prove ( ii ) 

we choose a local smooth parametrization / : Q ^ U of an open set U C M 

, defined on an open set Q C rm , so that / - 1 : U ^ Q is a coordinate 

chart . Suppose without loss of generality that y ( t ) e U for all t e I and 

define c : I ^ Q and <= : I ^ rm by 

m d /  

Y ( t ) = / ( c ( t ) ) X ( t ) = E <=i ( t ) dx ( c ( t ) ) -  

i= 1 

VX ( t ) = E I <= ( t ) + E rk ( c ( t ) ) ci ( t ) <=i ( t ) ) JY ( c ( t ) ) ,  

k=1 \ i , j=1  /  

where the Christoffel symbols rj : Q ^ r are defined by 

n ( / ) = E rk ^ .  
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dxidxj ^ iJ dxk 

k=1 

Now consider the same formula for f *X using the parametrization 

 / ' := f o / : Q ^ U' := f ( U ) C M' .  

The Christoffel symbols r'k : Q ^ r associated to this parametrization of 

U' are defined by the same formula as the rk - with / replaced by / ' . But 

the metric tensor for / agrees with the metric tensor for / ': 

 / d / d / \ / d / ' d / ' \ gij \ dxi , dxj / \ dxi , dxj / .  

Hence it follows from Lemma 3 . 6 . 5 that r'k = rk - for all i , j , k . This 

implies that the covariant derivative of f *X is given by 

m I m \ d / ' 

v' ( f . x ) = Euk + E T <c ) cr ) ( c )  

k=1 \ i , j=1  /  

mm 

= df ( / ( c ) ) E ( <=k + E 4 ( c ) YJ ) X ( c )  

yvw - s | dxk 

k=1 \ i , j=1 

= f*VX .  

Here is a second proof of ( ii ) . For every vector field X e Vect ( M ) we 

define the operator DX : Vect ( M ) ^ Vect ( M ) by 

DxY := 0* ( %x0*Y ) .  

Then , for all X , Y e Vect ( M ) , we have 

DyX - DxY = 0* ( V^y0*X - V^x0*Y ) = 0*[0*X , 0*Y] = [X , Y] .  

Moreover , it follows from ( i ) that 

0*Lx ( Y , Z ) = L^x ( 0*Y , 0*Z )  
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= ( V^x 0*Y , 0*Z ) + ( 0*Y , V^x 0*Z ) = ( 0 ( Dx Y , 0*Z ) + ( 0*Y , 

0* Dx Z )  

= 0* ( ( DxY , Z ) + ( Y , DxZ ) ) .  

and hence Lx ( Y , Z ) = ( DxY , Z ) + ( Y , DxZ ) for all X , Y , Z e Vect 

( M ) . Thus the operator X ^ DX satisfies equations , it follows that DxY 

= VxY for all X , Y e Vect ( M ) . This completes the second proof of ( ii 

) .  

We prove ( iii ) . Since 0 preserves the first fundamental form it also 

preserves the energy of curves , namely 

E ( 0 ◦ Y ) = E ( Y )  

for every smooth map 7 : [0 , 1] ^ M . Hence 7 is a critical point of the 

energy functional if and only if 0 o 7 is a critical point of the energy 

functional . Alternatively it follows from ( ii ) that 

for every smooth curve 7 : I ^ M . If 7 is a geodesic the last term vanishes 

and hence 0oy is a geodesic as well . As a third proof we can deduce ( iii 

) from the formula 0 ( expp ( v ) ) = exp^p ) ( d0 ( p ) v ) in the proof of 

Theorem We prove ( iv ) . For to e I and vo e TY ( t0 ) M define 

X ( t ) := T7 ( t , to ) vo , X' ( t ) := ( t , to ) # ( 7 ( to ) ) vo .  

By ( ii ) the vector fields X' and 0*X along 0 o 7 are both parallel and 

they agree at t = to . Hence X' ( t ) = 0*X ( t ) for all t e I  

We prove ( v ) . Fix a smooth map 7 : r2 ^ M and a smooth vector field Z 

along y , and define 7' = 0 o 7 : r2 ^ M' and Z' := 0*Z G Vect ( Y' ) . 

Then it follows from ( ii ) that 

R' ( ds y ' , 3tY ) z' = vytz> — yvs z' 

= 0* ( VSVZ — VtVsZ )  

= d0 ( Y ) R ( dsY , dtY ) Z = ( 0* R ) ( dsY' , dtY' ) Z' .  

 

7.5 GAUSSIAN CURVATURE 
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As a special case we shall now consider a hypersurface M C rm + 1 , i . e 

. a smooth submanifold of codimension one . We assume that there is a 

smooth map v : M ^ rm + 1 such that , for every p G M , we have v ( p ) 

T TpM and |v ( p ) | = 1 . Such a map always exists locally . Note that v ( 

p ) is an element of the unit sphere in rm + 1 for every p G M and hence 

we can regard v as a map from M to Sm: 

v : M - >■ Sm .  

Such a map is called a Gaufi map for M . Note that if v : M ^ S2 is a 

GauB map so is —v , but this is the only ambiguity when M is connected 

. Differentiating v at p G M we obtain a linear map 

dv ( p ) : TpM ^ Tv ( p ) Sm = TpM 

Here we use the fact that Tv ( p ) Sm = v ( p ) x and , by definition of the 

GauB map v , the tangent space of M at p is also equal to v ( p ) x . Thus 

dv ( p ) is a linear map from the tangent space of M at p to itself .  

Definition . The Gaussian curvature of the hypersurface M is the real 

valued function K : M ^ r defined by 

K ( p ) := det ( dv ( p ) : TpM ^ TpM )  

for p G M . ( Replacing v by —v has the effect of replacing K by ( —1 ) 

mK; so K is independent of the choice of the Gaufi map when m is even . 

)  

Remark . Given a subset B C M the set v ( B ) C Sm is often called the 

spherical image of B . If v is a diffeomorphism on a neighborhood of B 

the change of variables formula for an integral gives 

Ts = | K\tm 

■JB 

Jv ( B )  JB 

where pM and ps denote the volume elements on M and Sm , 

respectively . Introducing the notation AreaM ( B ) := fB pM we obtain 

the formula 
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|K ( p ) | = lim A=ITf ) ! .  

B^p AreaM ( B )  

This says that the curvature at p is roughly the ratio of the ( m - 

dimensional ) area of the spherical image v ( B ) to the area of B where B 

is a very small open neighborhood of p in M . The sign of K ( p ) is 

positive when the linear map dv ( p ) : TpM ^ TpM preserves orientation 

and negative when it reverses orientation .  

Remark . We see that the GauBian curvature is a natural generalization 

of Euler's curvature for a plane curve . Indeed if M C r2 is a 1 - manifold 

and p e M we can choose a curve 7 = ( x , y ) : ( —e , e ) ^ M such that y 

( 0 ) = p and \j ( s ) \ = 1 for every s . This curve parametrizes M by the 

arclength and the unit normal vector pointing to the right with respect to 

the orientation of y is v ( x , y ) = ( y , —X ) . This is a local GauB map 

and its derivative ( y , —X ) is tangent to the curve . The inner product of 

the latter with the unit tangent vector j = ( X , y ) is the GauBian 

curvature . Thus 

dx d2y dy d2x dd K := —— -  

ds ds2 ds ds2 ds 

where s is the arclength parameter and d is the angle made by the normal 

( or the tangent ) with some constant line . With this convention K is 

positive at a left turn and negative at a right turn .  

Exercise . The GauBian curvature of a sphere of radius r is constant and 

has the value r - m .  

Exercise . Show that the GauBian curvature of the surface z = x2 — y2 is 

—4 at the origin .  

We now restrict to the case of surfaces , i . e . of 2 - dimensional 

submanifolds of r3 . The difference between positive and negative 

GauBian curvature in dimension two .  

K > 0 K = 0 K < 0 
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Theorem ( GauBian curvature ) . Let M C r3 be a surface and fix a point 

p <= M . If u , v <= TpM is a basis then 

 ( R ( u , v ) v , u ) |u|2 |v|2 — ( u , v ) 2' 

Moreover , for all u , v , w <= TpM , we have 

R ( u , v ) w = —K ( p ) ( v ( p ) , u x v ) v ( p ) x w .  

Proof . The orthogonal projection of r3 onto the tangent space TpM = v ( 

p ) is given by the 3 x 3 - matrix 

n ( p ) = 1 — v ( p ) v ( p ) T . dn ( p ) u = —v ( p ) ( dv ( p ) u ) T — ( dv 

( p ) u ) v ( p ) T .  

Here the first summand is the second fundamental form , which maps 

TpM to TpMx , and the second summand is its dual , which maps TpMx 

to TpM . Thus 

hp ( v ) = v ( p ) ( dv ( p ) v ) T : TpM ^ TpM± , hp ( u ) * = ( dv ( p ) u ) 

v ( p ) T : TpM± ^ TpM .  

By the GauB - Codazzi formula this implies 

Rp ( u , v ) w = hp ( u ) *hp ( v ) w — hp ( v ) *hp ( u ) w 

= ( dv ( p ) u ) ( dv ( p ) v ) Tw — ( dv ( p ) v ) ( dv ( p ) u ) Tw = ( dv ( p 

) v , w ) dv ( p ) u — ( dv ( p ) u , w ) dv ( p ) v 

and hence 

 ( Rp ( u , v ) w , z ) = ( dv ( p ) u , z ) ( dv ( p ) v , w ) — ( dv ( p ) u , w ) 

( dv ( p ) v , z ) .  

Now fix four tangent vectors u , v , w , z G TpM and consider the 

composition 

r3 —4 r3 —4 r3 —4 r3 

of the linear maps 

:= ilv ( p ) + C2u + C3v ,  

dv ( p ) n , if n A v ( p ) , n , if n g rv ( p ) ,  
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<Z , v ( p ) )  

CZ := I <C , z )  

 ( C , w )  

This composition is represented by the matrix 

 / 1 0 0 

CBA = I 0 <dv ( p ) u , z ) <dv ( p ) v , z )  

\ 0 <dv ( p ) u , w ) <dv ( p ) v , w )  

Hence ,  

<Rp ( u , v ) w , z ) = det ( CBA )  

= det ( A ) det ( B ) det ( C )  

= <v ( p ) , u x v ) K ( p ) <v ( p ) , z x w )  

= —K ( p ) <v ( p ) , u x v ) <v ( p ) x w , z ) .  

This implies and 

<Rp ( u , v ) v , u ) = K ( p ) <v ( p ) , u x v ) 2 = K ( p ) |u x v|2 = K ( p ) 

( |u|2 |v|2 — <u , v ) 2 ) .  

This proves Theorem□ 

Corollary ( Theorem Egregium of Gaufi ) . The Gaussian curvature is 

intrinsic , i . e . if f : M 4 M' is an isometry of surfaces in r3 then 

K = K' o f : M 4 r .  

Exercise . For m = 1 the GauBian curvature is clearly not intrinsic as any 

two curves are locally isometric ( parameterized by arclength ) . Show 

that the curvature K ( p ) is intrinsic for even m while its absolute value | 

K ( p ) | is intrinsic for odd m > 3 . Hint: We still have the equation 

which , for z = u and v = w , can be written in the form 

 , , , .   ( {dv ( p ) u , u ) {dv ( p ) u , v )  

 ( R„ ( u , v ) v . v ) =de^ {dv ( p ) t , M ) {dv ( p ) „ , v )  
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Thus , for an orthonormal basis v\ , . . . , vm of TpM , the 2 x 2 minors of 

the matrix 

 ( {dv ( p ) vi , vj ) ) i , j=1 , . . . , m are intrinsic . Hence everything 

reduces to the following assertion .  

Lemma . The determinant of an m x m matrix is an expression in its 2 x 2 

minors if m is even; the absolute value of the determinant is an 

expression in the 2 x 2 minors if m is odd and greater than or equal to 3 .  

The lemma is proved by induction on m . For the absolute value , note 

the formula 

det ( A ) m = det ( det ( A ) 1 ) = det ( AB ) = det ( A ) det ( B ) for an m 

x m matrix A where B is the transposed matrix of cofactors .  

Curvature in Local Coordinates* 

Riemann 

Let M c rk be an m - dimensional manifold and let 

f = f ) ~l : U ^ Q 

be a local coordinate chart on an open set U c M with values in an open 

set Q c rm . Define the vector fields E1 , . . . , Em along by 

Ei ( x ) := ( x ) e 

These vector fields form a basis of T^;x ) M for every x e Q and the 

coefficients gij : Q ^ r of the first fundamental form are 

9ij = {Ei , Ej ) . Recall from Lemma that the Christoffel rj : Q —> r are 

the coefficients of the Levi - Civita connection , defined by 

m 

vtEj = Y rkj Ek 

k=l 

and that they are given by the formula 

m 
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r j := Y gk<= 2 ( di9ie + dj 9i<= - di9ij ) • 

<==i 

Define the coefficients 

Rjk : Q ^ r 

of the curvature tensor by 

m 

R{Ei , Ej ) Ek = Y R<=jkE<= .   

<==1 

These coefficients are given by 

m 

Rj := di j - dj rfk + Y ( rfv j j rk ) .  

V=1 

The coefficients of the Riemann curvature tensor have the symmetries 

Rijk<= Rjik<= Rij<=k Rk<=ij , Rijk<= : ^ ^ Rijkgv<= ,  

V 

and the first Bianchi identity has the form 

R<=jk + Rj<=ki + Rkij = ° .   

Warning: Care must be taken with the ordering of the indices . Some 

authors use the notation Rekij for what we call Rjk and R<=kij for what 

we cah Rijk<= .  

 

If M c rn is a 2 - manifold ( not necessarily embedded in r3 ) we can use 

equation as the definition of the GauBian curvature 

K : M ^ r .  
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Let ^ : Q ^ U be a local parametrization of an open set U c M defined on 

an open set Q c r2 . Denote the coordinates in r2 by ( x , y ) and define 

the functions E , F , G : Q ^ r by 

E := \dx^\2 , F := {dx^ , dy^ ) , G := \dy^|2 .  

We abbreviate 

D := EG - F2 .  

Then the composition of the GauBian curvature K : M ^ r with the 

parametrization ^ is given by the explicit formula 

1 / E F dyF — 1 dxG 

K o ^ = — det I F G 1 dyG 

\ 1 dXE dXF — 22 dyE — 1 dy2E + dxdyF — 1 dXG 

1 I E F 2 dyE — det I F G 2dxG 1dyE 2 dxG 0 

1 d ( EdxG — FdyE 

2\[Ddx V ^\ / D 

1 d / 2EdxF — FdxE — EdyE 

 + -  

2VD dy\ eVD 

This expression simplifies dramatically when F = 0 and we get TX i

 1 V d dxG d dyE \ 

o ^ = —^E^ ( dX TEG + oy TEG ) ( . . )  

Exercise . Prove that the Riemannian metric 

4 

E = G = JUT 2w t\2 , F = 0 

 ( 1 + x2 + y2 ) 2 

on r2 has constant constant curvature K = 1 and the Riemannian metric 
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4 

E = G = ( 1 — x2 — y2 ) 2 , F = 0 ,  

on the open unit disc has constant curvature K = —1 .  

 

Check your Progress -  1 

Discuss Curvature  

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Theorem of Egregium 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

 

7.6 LET US SUM UP 

In this unit we have discussed the definition and example of Curvature , 

Generalized Theorem of Egregium , Theorem of Egregium , Gaussian 

Curvature 

7.7 KEYWORDS 

Curvature ….. This chapter begins by introducing the notion of an 

isometry 

Generalized Theorem of Egregium ….. We will now show that 

Geodesics , covariant differentiation , parallel trans - port , and the 

Riemann curvature tensor are all intrinsic 
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Theorem of Egregium ….. The first fundamental form , covariant 

differentiation , Geodesics , parallel transport , and the Riemann 

curvature tensor are intrinsic . This means that for every isometry 0 : M ^ 

M' the following holds . 

Gaussian Curvature….. As a special case we shall now consider a 

hypersurface M C rm + 1 , i . e . a smooth submanifold of codimension 

one 

 

7.8 QUESTIONS FOR REVIEW 

Explain Curvature ,  

Explain Theorem of Egregium 

 

7.9 ANSWERS TO CHECK YOUR 

PROGRESS 

Curvature    ( answer for Check your Progress -  1 Q )  

Theorem of Egregium  ( answer for Check your Progress - 1 Q )  
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